Supporting Information

CoP QDs with carbon skeleton as co-catalysts modified CdS nanorods for photocatalytic hydrogen production

Qianqian Sun,^a Zebin Yu,*a Ronghua Jiang,^b Yanping Hou,^{a,c} Lei Sun,^d Lun Qian,^a

Fengyuan Li,^a Mingjie Li,^a Qi Ran,^a Heqing Zhang^a

^a School of Resources, Environment and Materials, Guangxi University, Nanning

530004, P. R. China.

^b School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan

512005, P. R. China.

^c Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, P.

R. China.

^d College of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China.

* Corresponding Author E-mail: xxzx7514@hotmail.com, yuzebin@gxu.edu.cn (Z Yu)

Fig. S1 XRD patterns of the ZIF-67 (a), ZIF-67-derived CoP (b), Co(OH)₂ (c) and Co(OH)₂-derived CoP (d).

Fig. S2 FESEM images of the ZIF-67 (a) and ZIF-67-derived CoP (b). TEM and HRTEM images of the ZIF-67-derived CoP (c, d).

Fig. S3 FESEM images of the $Co(OH)_2$ (a) and $Co(OH)_2$ -derived CoP (b).

Fig. S4 N_2 adsorption/desorption isotherms of CdS and 7% CoP/CdS.

Fig. S5 High-resolution XPS of spectra of C 1s (a), Cd 3d (b) and S 2p (c) of the bare CdS.

Fig. S6 High-resolution XPS of spectra of C 1s (a), Co 2p (b) and P 2p (c) of the ZIF-67-derived CoP.

Fig. S7 XRD patterns of the 7% CoP/CdS photocatalyst before and after stability test of photocatalytic H_2 production under visible light irradiation.

Fig. S8 FESEM images of the 7% CoP/CdS photocatalyst before (a, b) and after (c, d) stability test of photocatalytic H₂ production under visible light irradiation.

Fig. S9 (a) TEM and (b) HRTEM images, (c-h) STEM images and EDS mappings of the 7% CoP/CdS photocatalyst after stability test of photocatalytic H_2 production under visible light irradiation.

Photocatalyst	H ₂ production	Reference
CdS/Co@NC	21.8 mmol h ⁻¹ g ⁻¹	1
MoS ₂ /CdS	12.38 mmol g ⁻¹ h ⁻¹	2
NiSe ₂ /CdS	61.522 mmol g ⁻¹ (5 h)	3
NixP/CdS	69.2 mmol h ⁻¹ g ⁻¹	4
WS ₂ -CdS	19.2 mmol h ⁻¹ g ⁻¹	5
WPS/CdS	123.257 mmol g ⁻¹ (5 h)	6
CoS ₂ /CdS	58 mmol h ⁻¹ g ⁻¹	7
CoOx@N, S-C/CdS	40.1 mmol h ⁻¹ g ⁻¹	8
Pt/CdS	24.15 mmol h ⁻¹ g ⁻¹	9
CoP-CdS	13.785 mmol h ⁻¹ g ⁻¹	10
CoP/CdS	104.947 mmol h ⁻¹ g ⁻¹	This work

Table S1 Comparison of different co-catalysts decorated CdS NRs.

Fig. S10 Transient photocurrent density of CdS, 7% CoP/CdS, 7% CP/CS and 7% CoP+CdS (a). EIS spectra of CdS, 7% CoP/CdS, 7% CP/CS and 7% CoP+CdS (b).

References

- 1. X. Meng, C. Zhang, C. Dong, W. Sun, D. Ji and Y. Ding, *Chem. Eng. J.*, 2020, **389**, 124432.
- C. Feng, Z. Chen, J. Hou, J. Li, X. Li, L. Xu, M. Sun and R. Zeng, *Chem. Eng. J.*, 2018, 345, 404-413.
- 3. G. Wang and Z. Jin, *Appl.Surf. Sci.*, 2019, **467-468**, 1239-1248.
- 4. S. Zhu, J. Wang, Y. He, Z. Yu, X. Wang and W. Su, Catal. Sci. Technol., 2019, 9, 5394-5400.
- 5. B. Archana, N. Kottam, S. Nayak, K. B. Chandrasekhar and M. B. Sreedhara, *J. Phys. Chem. C*, 2020, DOI: 10.1021/acs.jpcc.0c03411.
- 6. Q. Jian, X. Hao, Z. Jin and Q. Ma, *Phys. Chem. Chem. Phys.*, 2020, 22, 1932-1943.
- J. Tang, B. Gao, J. Pan, L. Chen, Z. Zhao, S. Shen, J.-K. Guo, C.-T. Au and S.-F. Yin, *Appl. Catal.*, *A*, 2019, **588**, 117281.
- J. Wang, Q. Xu, M. Liu, K. Wang, Z. Wang and P. Qu, Sustain. Energ. Fuels, 2020, 4, 1954-1962.
- 9. S. Liu, Z. Guo, X. Qian, J. Zhang, J. Liu and J. Lin, Sustain. Energ. Fuels, 2019, 3, 1048-1054.
- 10. J. Wang, P. Wang, C. Wang and Y. Ao, Int. J. Hydrogen Energy, 2018, 43, 14934-14943.