Supporting information

Deep eutectic solvent-based manganese molybdate nanosheets for sensitive and simultaneous detection of human lethal compounds: Comparing the electrochemical performances of M-molybdate (M= Mg, Fe, and Mn) electrocatalysts

Jeena N. Baby,^{a, ¥} Balasubramanian Sriram,^{b, ¥} Sea-Fue Wang,^{b,*} Mary George,^{a,*} Mani Govindasamy,^b Xavier Benadict Joseph,^b

^aDepartment of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai-600 086, Tamil Nadu, India.

^bDepartment of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.

Corresponding Authors

Sea-Fue Wang – Email: <u>sfwang@ntut.edu.tw.</u> Mary George – Email: <u>marygeorge@stellamariscollege.edu.in.</u>

Chemicals and Reagents

All the chemicals used in the study are of analytical grade and are received from Sigma-Aldrich and Merck. Ultrapure fresh water is obtained from a millipore water purification system (Milli-Q, specific resistivity >18 M Ω cm, S.A.; Molsheim, France) and is used in all the experiments. Sodium phosphate dibasic and sodium dihydrogen phosphate (Na₂HPO₄ and NaH₂PO₄) are utilized to prepare 0.05 M (pH 7) PB (phosphate buffer). All the electrochemical experiments are carried out using 0.05 M PB (pH 7) as the supporting electrolyte.

Fabrication of Modified Electrodes.

Scheme S1. Fabrication of M-molybdate (M- Mg, Fe and Mn) modified electrodes and sensing of HQ, Hg²⁺ and NO₂⁻

Fig. S1. EDS of (a) MgMoO₄ NRs (b) $Fe_2(MoO_4)_3$ YSs and (c) MnMoO₄ BC.

Fig. S2. BET isotherms of (a) MgMoO₄ (b) Fe₂(MoO₄)₃ and (c) MnMoO₄.

Fig. S3. Nyquist plot of various electrodes: bare GCE, MgMoO₄ NRs/GCE, Fe₂(MoO₄)₃ YSs/GCE and MnMoO₄ BC/GCE; inset: diagram of Randles equivalent circuit model.

Potential (Peak to Peak)

Fig.S4. CV profiles of background, unmodified and modified MgMoO₄ NRs (a), Fe₂(MoO₄)₃ YSs (b), and MnMoO₄ BC (c) electrodes towards 100 μ M of HQ, Hg²⁺ and NO₂⁻. All measurements were recorded in electrolyte: 0.05 M PB (pH 7.0) at a scan rate of 50 mV s⁻¹. (d), Crystal structures of MgMoO₄ (a), Fe₂(MoO₄)₃ (b), and MnMoO₄ with catalytic performances towards Electrochemical detection of HQ, Hg²⁺ and NO₂⁻.

Fig. S5. (a) Effect of catalyst loading on GCEs (μ L) vs. relative peak current in presence of HQ, Hg²⁺ and NO₂⁻. (b) Plot of MnMoO₄ BC/GCE obtained in supporting electrolyte at different pH containing 100 μ M HQ, Hg²⁺ and NO₂⁻ (plot between current vs pH).

Real sample preparation

Face cream was obtained from local shop market. Tuna fish & Salami are brought from Zhnogshan fish market, Taipei, Taiwan. Certain amount of fishes is weighed for about 6g and is been homogenized with 3.0 mL of 0.1 mol L⁻¹ EDTA and merged with 2.0 mL in pH 7.0 Mclavine buffer solution by utilizing HY-4 homogenizer model instrument with a lateral speed of 5000 rpm for nearly 30 mins. Afterwards it is shaken vigorously for almost 10 mins with 3 m mL of acetonitrile. Continuing, it is centrifuged at a speed of 5000 rpm for 10 mins, transferred to a clean polypropylene tube. Moreover, using 3.0 mL of aliquot acetonitrile fish residues were extracted. Later, both the extracts are combined further evaporated by drying in nitrogen atmosphere. Obtained dried extract is re-formed in 200 μ L of methanol, centrifuged in 5000 rpm for 5 mins and then stored for further use in 40C dark area.

Fig. S6. (a) DPV profiles of selectivity of the MnMoO₄ modified GCE containing simultaneous addition HQ Hg²⁺ and NO₂⁻ in the presence of an excess concentration (1–9) of CC, RC, Cd²⁺, Pb²⁺, NaAc, ascorbic acid, NaCl, bisphenol A, and glucose. (**b and c**) Reproducibility and stability of the MnMoO₄ modified GCE in 0.05 M pH 7.0. DPV profiles of different real samples of the MnMoO₄ modified GCE containing (**d**) HQ, (**e**) Hg²⁺ and (**f**) NO₂⁻. (**g**) Schematic representation of real-time analysis of analytes causing metabolic toxication.

Sample	Lattice	paran	neters ((Å)	Scherrer	Lattice	Surface	Pore	Pore
	a	b	c	β	method	strain	area	volume	diameter
					D (nm)		(m ² /g)	(cc/g)	(nm)
MgMoO ₄	10.15	9.24	7.03	105.9	27.55	0.0102	21.05	0.078	8.91
Fe ₂ (MoO ₄) ₃	15.70	9.23	18.2	125.2	22.95	0.0122	45.24	0.046	6.19
MnMoO ₄	10.46	9.51	7.14	106.2	13.45	0.0105	90.08	0.019	2.88

Table S1. Structural, BET and BJH parameters of MgMoO₄, Fe₂(MoO₄)₃ and MnMoO₄.

Table S2. Comparison of analytical confines for the determination of HQ at $MnMoO_4$ BC modified electrode with previous reports.

Electrode	Methods	Linear range	LOD	Interfering	Ref
materials		(µM)	(µM)	species	
PANI/MnO ₂	DPV	0.2–100	0.13	CC and RC	S1
CD ^a /r-GO	DPV	0.5-1000	0.17	CC and RC	S2
AuNPs/Fe ₃ O ₄ -	Amperometric i-t	3–137	1.1	CC	S3
^b APTES-GO					
GR ^c -La(OH) ₃	DPV	5-300	0.015	CC	S4
Pt–Au–	Amperometric i-t	0.06-90.98	0.02	CC	S5
dOSi@CS					
Graphene-	DPV	1.0-200	0.75	CC	S6
chitosan					
NA-COGH ^e	DPV	0.8–500	0.034	CC	S7
Polydopamine-	DPV	1.0-2300	0.074	CC	S8
RGO					
P-rGO	DPV	5-120	0.18	CC	S9
GMC	DPV	2-70	0.31	CC	S10
Nitrogen-	DPV	20-1000	2.71	CC	S11
doped CNT					
MnMoO4 BC	DPV	0.9-591.2	0.026	Hg ²⁺ and NO ₂ -	This
					work

a- Carbon dot, b- (3-Aminopropyl) triethoxysilane, c- Graphene,

d- Organosilica@chitosan composites, e- Nanopore array derived cysteine oxide/gold hybrids.

Table S3. Comparison of analytical limitations for the determination of Hg^{2+} at MnMoO₄ BC modified electrode with previous reports.

Electrode	Methods	Linear	LOD	Interfering	Ref.
Materials		Range		Species	
Pd _{1.5} / ^a PAC-900	DPV	0.24-7.5µM	0.054 µM	Cd ²⁺ , Pb ²⁺ ,	S12
				and Cu ²⁺	
^b NH ₂ -CMS	SWASV ^c	0.4–1.2 μM	0.098 µM	Cd ²⁺ , Pb ²⁺ ,	S13
				and Cu ²⁺	
DNA Modified	SWV	10-100 nM	1.7 nM	Ag+	S14
Fe ₃ O ₄ @Au NPs					
SnO ₂ /RGO	SWASV	0.4–1.2 μM	0.279 nM	Cd ²⁺ , Pb ²⁺ ,	S15
				and Cu ²⁺	
NG ^d	DPSV ^e	0.2–9 μM	0.05 µM	Cd ²⁺ , Pb ²⁺ ,	S16
				and Cu ²⁺	
MnFe ₂ O ₄ NAs ^f	DPV	100 nM-	0.14 nM	-	S17
		872.3 μM			
^g Alk-Ti ₃ C ₂	SWASV	0.1–1.5 μM	0.130	Cd ²⁺ , Pb ²⁺ ,	S18
				and Cu ²⁺	
MnMoO ₄ BC	DPV	0.9-591.2 μM	0.05 μΜ	HQ and	This work
				NO_2^-	

a- Porous activated carbons, b- Amino-functionalized carbon microsphere, c- Square wave anodic stripping voltammetry, d- N-doped graphene e- Differential pulse stripping voltammetry, f- Nano-agglomerates g- Alkaline intercalation of Ti_3C_2 MXene

Table S4. Comparison of analytical limitations for the determination of NO_2^- at MnMoO₄ BC modified electrode with previous reports.

Electrode	Methods	Linear Range	LOD	Interfering	Ref.
Materials			(µM)	Species	
La-MWCNTs	Chronoamperometry	0.4–710 μM	0.13	AA, DA	S19
				and UA	
HOOC-MWCNT	DPV	100 µM to	0.56	SO ₃ ^{2–}	S20
		0.7 mM			
Cu/MWCNT/RGO	SWV	0.1–75 μM	0.03	NO ₃ ⁻	S21
AgZEGE ^a	CV	100–1000 µM	0.005	NO ₃ ⁻	S22
G-PLA ^b	Multiple-pulse	0.5–250 μM	0.03	Uric Acid	S23
	amperometry				
NRCu ^c /rGO	DPV	0.3–131.5 μM	0.1	HQ, CC	S24
				and RS	
^d 2,4-DDMA-	SWVs	10.0–700.0 µM	5.0	TS and 4-	S25
NiO/NP				CPe	
MnMoO ₄ BC	DPV	0.9-453.1 μM	0.01	HQ and	This
				Hg ²⁺	work

a- Zeolite-expanded graphite-epoxy composite electrode, b-Polylactic acid containing graphene, *c-* Nanoraspberry-like copper, *d-* 2,4-dimethyl-N'-[1-(2,3- dihydroxyphenyl)methylidene]aniline, *e-* Thiosulfate and 4-chlorophenol

Table S5. Results of determination of HQ, Hg^{2+} and NO_2^{-} in face cream, tuna fish, and salami samples towards MnMoO₄ BC/GCE.

Samples	Added* (µM)	Detected (µM)ª HPLC	Detection Rate (%) (Mean ± RSD) (n=3)
	0	-	-
Face cream	10	09.86	98.60 ± 0.017
	50	49.90	99.80 ± 0.011
	100	99.70	99.70 ± 0.005
	0	-	-
Tuna fish	10	09.73	97.30 ± 0.014
	50	49.50	99.00 ± 0.008
	100	99.17	99.17 ± 0.019
	0	-	-
Salami	10	09.82	98.20 ± 0.012
	50	49.27	98.54 ± 0.018
	100	99.16	99.16 ± 0.017

^aStandard addition method. Relative standard deviation deduced from three separate measurements.

References:

- 1. M. A. Prathap, B. Satpati and R. Srivastava, Sens. Actuators, B, 2013, 186, 67-77.
- W. Zhang, J. Zheng, Z. Lin, L. Zhong, J. Shi, C. Wei, H. Zhang, A. Hao and S. Hu, Analytical Methods, 2015, 7, 6089-6094.
- 3. S. Erogul, S. Z. Bas, M. Ozmen and S. Yildiz, *Electrochim. Acta*, 2015, 186, 302-313.
- Z. Guo, Y. Lu, J. Li, X.-f. Xu, G.-q. Huang and Z.-y. Wang, *Analytical Methods*, 2014, 6, 8314-8320.
- 5. D. Yuan, S. Chen, F. Hu, C. Wang and R. Yuan, Sens. Actuators, B, 2012, 168, 193-199.

- H. Yin, Q. Zhang, Y. Zhou, Q. Ma, L. Zhu and S. Ai, *Electrochim. Acta*, 2011, 56, 2748-2753.
- W. Liu, C. Li, L. Tang, A. Tong, Y. Gu, R. Cai, L. Zhang and Z. Zhang, *Electrochim. Acta*, 2013, 88, 15-23.
- H. Zhou, T. Huang, D. Chen, S. Li, H. Yu, Y. Li and Q. Song, Sens. Actuators, B, 2017, 249, 405-413.
- 9. H. Zhang, X. Bo and L. Guo, Sens. Actuators, B, 2015, 220, 919-926.
- X. Yuan, D. Yuan, F. Zeng, W. Zou, F. Tzorbatzoglou, P. Tsiakaras and Y. Wang, *Appl. Catal*, 2013, **129**, 367-374.
- 11. 11 M. Amiri, S. Ghaffari, A. Bezaatpour and F. Marken, *Sens. Actuators, B*, 2012, 162, 194-200.
- P. Veerakumar, V. Veeramani, S.-M. Chen, R. Madhu and S.-B. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 1319-1326.
- 13. Y.-F. Sun, L.-J. Zhao, T.-J. Jiang, S.-S. Li, M. Yang and X.-J. Huang, Journal of J. *Electroanal. Chem*, 2016, **760**, 143-150.
- 14. P. Miao, Y. Tang and L. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 3940-3947.
- 15. H. T. Ratte, Environ. Toxicol. Chem, 1999, 18, 89-108.
- 16. J. Liu, S. Fu, B. Yuan, Y. Li and Z. Deng, J. Electroanal. Chem, 2010, 132, 7279-7281.
- S. Kogularasu, M. Akilarasan, S.-M. Chen, E. Elaiyappillai, P. M. Johnson, T.-W. Chen,
 F. M. Al-Hemaid, M. A. Ali and M. S. Elshikh, *Electrochim. Acta*, 2018, 290, 533-543.
- 18. X. Zhu, B. Liu, H. Hou, Z. Huang, K. M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu and J. Yang, *Electrochim. Acta*, 2017, **248**, 46-57.
- W. Zhang, R. Yuan, Y.-Q. Chai, Y. Zhang and S.-H. Chen, Sens. Actuators, B, 2012, 166, 601-607.
- 20. V. Sudha, S. M. S. Kumar and R. Thangamuthu, J. Alloys Compd, 2018, 749, 990-999.
- H. Bagheri, A. Hajian, M. Rezaei and A. Shirzadmehr, *J. Hazard. Mater.*, 2017, **324**, 762-772.
- F. Manea, A. Remes, C. Radovan, R. Pode, S. Picken and J. Schoonman, *Talanta*, 2010, 83, 66-71.

- 23. R. M. Cardoso, P. R. Silva, A. P. Lima, D. P. Rocha, T. C. Oliveira, T. M. do Prado, E. L. Fava, O. Fatibello-Filho, E. M. Richter and R. A. Muñoz, *Sens. Actuators, B*, 2020, 307, 127621.
- 24. N. Sabbaghi and M. Noroozifar, Anal. Chim. Acta, 2019, 1056, 16-25.
- Z. Keivani, M. Shabani-Nooshabadi and H. Karimi-Maleh, J. Colloid Interf. Sci, 2017, 507, 11-17.