Supporting Information

Band Structure Tuning of α -MoO₃ by Tin Intercalation for Ultrafast Photonics Applications

Jiamei Lin^{a, c}; Hualong Chen^a; Dingtao Ma^b; Youning Gong^{*, a}; Zhongjun Li^a; Delong Li^{*, a}; Yufeng Song^a; Feng Zhang^a; Jianqing Li^b; Hongcheng Wang^c; Yupeng Zhang^a; Han Zhang^{*, a};

^aInstitute of Microscale Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
^bFaculty of Information Technology, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
^cSchool of Electrical Engineering and Intelligentization Dongguan University of Technology Dongguan, 523808, P. R. China

Email: nickgon@whu.edu.cn, ypzhang@szu.edu.cn, hzhang@szu.edu.cn

Figure S1. The digital images of (a) MoO₃/IPA, Sn-MoO₃/IPA dispersion; (b) MoO₃ and (c) Sn-MoO₃ powder.

Figure S2. SEM image of the MoO₃ nanoribbons, with corresponding EDS mappings of Mo and O elements.

Figure S3. SEM image of the Sn-MoO₃ nanoribbons, with corresponding EDS mappings of Mo, O, and Sn elements.

Figure S4. (a) AFM images of $Sn-MoO_3$ and (b) corresponding height profiles.

Figure S5. (a) TEM and (b) HRTEM images of MoO₃ nanoribbons.

Figure S6. The XPS spectra of MoO₃ nanoribbons

Figure S7. The work principle of pump probe setup. (a) The relationship between pump light and probe light in time domain and space domain; (b) The schematic diagram of pump probe setup.

Materials	A_1	$\tau_{1}(fs)$	A_2	τ_2 (ps)	A ₃	$\tau_3(ps)$
MoO ₃ @508 nm	0.0104	426.5	0.00555	419.9	-	-
Sn-MoO ₃ @508 nm	0.0123	228.6	0.00462	402.4	-	-
MoO ₃ @749 nm	-0.00509	356.1	0.00064	299.8	-0.00054	2.384
Sn-MoO ₃ @749 nm	-0.0073	227.8	0.00078	289.4	-0.00098	0.845

Table S1: Carrier dynamics amplitude and relaxation times

Figure S8. The nonlinear optical effect of MoO₃ in 1.5 μm; (a) Optical spectrum, (b) corresponding pulse train, (c) auto-correlation trace, (d) RF spectrum.