Supporting Information

Highly dispersed secondary building unit-stabilized binary metal center

on hierarchical porous carbon matrix for enhanced oxygen evolution

reaction

Lu Meng,^a Ling Zhang,^a Hongliang Jiang,^b Yusuf Valentino Kaneti,^c Jongbeom Na,^d Yusuke

Yamauchi,*d Dmitri Golberg,c,e Hao Jiang,a Yihua Zhu,*a and Chunzhong Li *ab

^a Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. yhuzhu@ecust.edu.cn
^b School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. czli@ecust.edu.cn
^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
^d School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia. y.yamauchi@uq.edu.au
^e School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia

* Email: yhzhu@ecust.edu.cn (Prof. Y. H. Zhu); czli@ecust.edu.cn (Prof. C. Z. Li); y.yamauchi@uq.edu.au (Prof. Y. Yamauchi))

*Author(s) to whom correspondence should be addressed.

Fig. S1 XRD patterns of (a) Fe-SBU@Co-Matrix, (b) Fe@Co-Matrix, and (c) Co-Matrix with the corresponding PDF cards.

Fig. S2 TEM images of Fe-SBU@Co-Matrix (a) and Fe@Co-Matrix (b).

Fig. S3 XPS survey spectra of (a) Fe-SBU@Co-Matrix, (b) Fe@Co-Matrix, and (c) Co-Matrix.

Fig. S4 Cyclic voltammogram (CV) curves of (a) Fe-SBU@Co-Matrix, (b) Fe@Co-Matrix, (c) Co-Matrix, and (d) RuO₂.

Fig. S5 Capacitive currents as a function of sweep rate of Fe-SBU@Co-Matrix, Fe@Co-Matrix, Co-Matrix, and RuO₂ electrodes measured at 0.15 V. The double-layer capacitances are calculated from the slope of the linear fitting to the data.

Fig. S6 The electrochemical impendence (EIS) spectra and equivalent electrical circuit fitting Nyquist plots.

Fig. S7 TEM pictures of Fe-SBU@Co-Matrix before (a) and after (b) the OER stability test.

Fig. S8 XRD patterns of Fe-SBU@Co-Matrix before and after the OER stability test for 40 h in 1.0 M KOH.

Fig. S9 High-resolution XPS spectra of Fe-SBU@Co-Matrix before and after the OER stability test for 40 h in 1.0 M KOH: (a) Co 2p and (b) Fe 2p

Fig. S10 Electrochemical stability tests of Fe-SBU@Co-Matrix, Fe@Co-Matrix, Co-Matrix, and RuO₂ in 1.0 M KOH at 20 mA cm⁻².

Fig. S11 Electrochemical performance of Co-Matrix electrocatalysts stabilized with different metal constituents toward ORR in 0.1 M KOH.

Fig.S12 TEM after acid etching (a) Fe-SBU@Co-Matrix, (b) Fe@Co-Matrix

Fig. S13 XRD patterns after acid etching of Fe-SBU@Co-Matrix and Fe@Co-Matrix

Fig. S14 XPS spectra after acid etching of Fe-SBU@Co-Matrix and Fe@Co-Matrix (a) Co 2p, (b) Fe 2p, (c) N 1s

Fig. S15 Polarization curves of different electrocatalyst at scan rate 5 mV s⁻¹ of Fe-SBU@Co-Matrix and Fe@Co-Matrix after acid etching.

 Table S1 BET surface area of different catalysts.

Catalyst	BET surface area (m ² /g)
Fe-SBU@Co-Matrix	201
Fe@Co-Matrix	177
Co-Matrix	263

 Table S2 The overpotentials and Tafel plots of different electrocatalysts for OER.

Catalyst	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)
Fe-SBU@Co-Matrix	250	59
Fe@Co-Matrix	380	72
Co-Matrix	350	100
RuO ₂	330	77

Table S3 Electrochemical performances of Co-Matrix electrocatalysts stabilized with different metal SBUs for OER and ORR

Catalyst	$\eta_{10}(\mathrm{mV})$	Half-wave potential (V)	
Fe-SBU@Co-Matrix	250	0.81	
Ni-SBU@Co-Matrix	336	0.76	
Fe,Zn-SBU@Co-Matrix	291	0.79	
Fe,Ni-SBU@Co-Matrix	297	0.79	

Table S4 Comparison of the OER performance of Fe-SBU@Co-Matrix with other reported nonprecious metal-based electrocatalysts for OER in alkaline media. Note: All reference electrodes were calibrated to the RHE. η 10: overpotential at a current density of 10 mA cm⁻².

Catalyst	$oldsymbol{\eta}_{10}$	Loading	Tafel	Electrolyte	Reference
-		(ing cm ⁻)			
Fe-SBU@Co-Matrix	250	0.40	59.0	1.0 M KOH	This work
FeCoNi alloy	400	1.38	72.0	0.5 M KOH	1
Fe-Co-P alloy	252	0.20	33.0	1.0 M KOH	2
NiFe-MoO _x	276	0.20	55.0	1.0 M KOH	3
m-NiFe/CN _x	220	0.51	59.1	0.1 M KOH	4
CoFe-MWCNTs	300	1.00	87.0	1.0 M KOH	5
Ni-Co alloy	305	N/A	63.0	1.0 M KOH	6
Fe-Ni/NC(1/2)-800	273	0.45	37.8	1.0 M KOH	7
FeNi _{4.34} @FeNi	283	N/A	53.0	1.0 M KOH	8
CoFe ₂ O ₄ /PANI- MWCNT _{1:20}	314	0.29	30.7	1.0 M KOH	9
CoFe-LDH	325	0.20	43.0	0.1 M KOH	10
M-CoO/CoFe LDHs	254	0.20	34.0	1.0 M KOH	11
Co ₃ FeS _{1.5} (OH) ₆	358	0.50	79.0	0.1 M KOH	12
H ₂ O-plasma exfoliated LDHs /NF	232	0.40	36.0	1.0 M KOH	13
CoFe LDHs-Ar	266	0.20	37.9	1.0 M KOH	14
CoFe-H	280	N/A	28.0	1.0 M KOH	15
N-CoFe LDHs	281	0.20	40.0	1.0 M KOH	16

References

- 1. S. Saha and A. K. Ganguli, *Chemistryselect*, 2017, **2**, 1630-1636.
- K. W. Liu, C. L. Zhang, Y. D. Sun, G. H. Zhang, X. C. Shen, F. Zou, H. C. Zhang, Z. W. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. M. Peng and Y. Zhu, *Acs Nano*, 2018, 12, 158-167.
- 3. C. Xie, Y. Y. Wang, K. Hu, L. Tao, X. B. Huang, J. Huo and S. Y. Wang, J Mater Chem A, 2017, 5, 87-91.
- 4. S. Q. Ci, S. Mao, Y. Hou, S. M. Cui, H. Kim, R. Ren, Z. H. Wen and J. H. Chen, *J Mater Chem A*, 2015, **3**, 7986-7993.
- 5. Z. Ali, M. Mehmood, J. Ahmed, A. Majeed and K. H. Thebo, *Mater Lett*, 2020, **259**, 126831
- 6. R. K. V. Prataap and S. Mohan, *Chem Commun*, 2017, **53**, 3365-3368.
- D. Xiang, X. J. Bo, X. H. Gao, C. M. Zhang, C. Du, F. Q. Zheng, Z. H. Zhuang, P. Li, L. D. Zhu and W. Chen, *J Power Sources*, 2019, 438, 226988
- 8. U. Y. Qazi, C. Z. Yuan, N. Ullah, Y. F. Jiang, M. Imran, A. Zeb, S. J. Zhao, R. Javaid and A. W. Xu, Acs Appl Mater Inter, 2017, 9, 28627-28634.
- 9. Y. Liu, J. Li, F. Li, W. Z. Li, H. D. Yang, X. Y. Zhang, Y. S. Liu and J. T. Ma, *J Mater Chem A*, 2016, **4**, 4472-4478.
- 10. X. T. Han, C. Yu, J. Yang, C. T. Zhao, H. W. Huang, Z. B. Liu, P. M. Ajayan and J. S. Qiu, *Adv Mater Interfaces*, 2016, **3**, 1500782
- 11. Z. W. Gao, T. Ma, X. M. Chen, H. Liu, L. Cui, S. Z. Qiao, J. Yang and X. W. Du, *Small*, 2018, 14, 1800195
- 12. H. F. Wang, C. Tang, B. Wang, B. Q. Li and Q. Zhang, Adv Mater, 2017, 29, 1702327.
- 13. R. Liu, Y. Y. Wang, D. D. Liu, Y. Q. Zou and S. Y. Wang, Adv Mater, 2017, 29, 1701546
- 14. Y. Y. Wang, Y. Q. Zhang, Z. J. Liu, C. Xie, S. Feng, D. D. Liu, M. F. Shao and S. Y. Wang, *Angew Chem Int Edit*, 2017, **56**, 5867-5871.
- 15. W. Liu, H. Liu, L. N. Dang, H. X. Zhang, X. L. Wu, B. Yang, Z. J. Li, X. W. Zhang, L. C. Lei and S. Jin, *Adv Funct Mater*, 2017, **27**, 1603904
- 16. Y. Y. Wang, C. Xie, Z. Y. Zhang, D. D. Liu, R. Chen and S. Y. Wang, *Adv Funct Mater*, 2018, **28**, 1703363