Supporting Information

 $Ti_3C_2T_x$ nanosheet wrapped core-shell MnO₂ nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li–S battery

Heng Zhang,‡ ^a Peigen Zhang,‡ ^a Long Pan,* ^a Wei He,^a Qi Qi,^a Li Yang,^a Zhuoheng Bao,^a Wei Zhang,^a Michel W. Barsoum,^b and ZhengMing Sun*^a

^a Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China

^b Department of Materials Science and Engineering, Drexel University, PA19104, USA

* Corresponding authors: zmsun@seu.edu.cn (Z.M. S.), panlong@seu.edu.cn (L. P.)

‡ These two authors are equal major contributors to this work.

Table of Contents

- 1. Supplementary Figures
- 2. Supplementary Tables
- 3. Supplementary References

1. Supplementary Figures

Fig. S1. (a) Schematic illustration for synthesis process of core-shell MC. (b-d) SEM images of MNR, MNR@SiO₂@HPC, and MC. (e-g) TEM images of (e) MNR, (f) MNR@SiO₂@C and (g) MC.

SEM and TEM images show the MnO₂ nanorods (MNR) have a homogenous lateral size distribution with an average diameter of ~50 nm, and their length scales are in the range of several microns. HRTEM image in the inset of (e) shows that MNR exhibits distinct lattice spacing of 0.49 nm corresponding to the (200) plane of MnO₂ (JCPDS No. 72-1982). After coating with SiO₂ and HPC layers, the average diameter of MNR@SiO₂@HPC is increased to about 200 nm. By etching the SiO₂ interlayer, the resulting MC shows a yolk-shell structure, in which the morphology of MNR and HPC are well preserved. HRTEM image in the inset of (g) indicates that the HPC shell with a thickness of about 10 nm contains a large number of mesopores with pore size of 3-4 nm. These pores can provide abundant channels for molten sulfur impregnation and Li ion diffusion.

Fig. S2. (a) Schematic illustration for the synthesis process of $Ti_3C_2T_x$. (b-d) SEM images of MAX (Ti_3AlC_2), multilayered- $Ti_3C_2T_x$ (m- $Ti_3C_2T_x$), and $Ti_3C_2T_x$ nanosheets.

After etching Al atom layers from the dense layered Ti_3AlC_2 bulks, the m- $Ti_3C_2T_x$ with a typical accordion structure is further delaminated into few-layered, crumpled $Ti_3C_2T_x$ nanosheets *via* a simple, ultrasonic-assisted liquid exfoliation process.

Fig. S3. Zeta-potential of (a) $Ti_3C_2T_x$, (b) PDDA-MC and (c) MCT. The insets are the photographs of the corresponding suspensions.

Fig. S4. (a) XRD patterns of Ti_3AlC_2 MAX, m- $Ti_3C_2T_x$ and $Ti_3C_2T_x$. (b) Nitrogen adsorption/desorption isotherms of m- $Ti_3C_2T_x$ and $Ti_3C_2T_x$. Inset of (b) is the corresponding pore size distributions.

In the XRD patterns, the most prominent (002) reflection of m-Ti₃C₂T_x located at 6.85° shifts to a lower 2 θ angle of 5.8° in the Ti₃C₂T_x, resulting in Ti₃C₂T_x nanosheets have an bigger lattice spacing and more active sites than m-Ti₃C₂T_x.

Fig. S5. SEM image of the 3D MCT hierarchical structure.

Fig. S6. (a, b) TEM images of the MCT/S composite.

Fig. S7. (a, b) CV curves of the $Ti_3C_2T_x/S$ and MC/S cathodes at 0.1 mV s⁻¹.

Fig. S8. Charging/discharging curves of the $Ti_3C_2T_x/S$ cathode at different current densities.

Fig. S9. SEM images of MCT/S electrode before (a) and after (b) cycling (200 cycles at 0.2C with a S-mass loading of 4.15 mg cm⁻²). (a1, b1) Cross section and (a2-b3) top-view SEM images.

Fig. S10. TEM images at different magnification of MCT/S after cycling (200 cycles at 0.2C with a S-mass loading of 4.15 mg cm⁻²).

2. Supplementary Tables

Table S1. Comparison of EIS fitting parameters in the equivalent circuit model for MCT/S, MC/S, and $Ti_3C_2T_x/S$ cathodes

Cathodes	B (O)	$R_{ct}(\Omega)$ -	CPE ₁		CPE ₂	
	K _e (22)		$\mathbf{Z}_{\mathrm{CPE1}}\left(\Omega ight)$	<i>n</i> ₁	$\mathrm{Z}_{\mathrm{CPE2}}\left(\Omega ight)$	<i>n</i> ₂
MCT/S	2.50	24.28	5.10×10^{2}	0.66	29.02	0.57
MC/S	4.28	66.85	3.45×10^{3}	0.53	40.81	0.40
$Ti_3C_2T_x/S$	3.06	50.93	1.68×10^{3}	0.71	38.17	0.63

 $\overline{Z_{\text{CPE}}}$ is defined as $Z_{\text{CPE}} = Y^{-1}(jw)^{-n}$. When n = 1, CPE represents an ideal capacitor with the capacitance Y; when n = 0, CPE is a resistor with the admittance Y.

Cathodes	Host feature	S content/loading Initial capacity Rate capacity		Cycle life	Capacity decay	Ref	
		(%/mg cm ⁻²)	(mA h g ⁻¹ /C)	(mA h g ⁻¹ /C)	(mA h g ⁻¹ /cycles/C)	(% per cycle)	Kei.
MCT/S	3D hierarchical	75/2.0	1406/0.05	740/1.0	953/200/1.0	0.059	This
	structure			688/2.0	591/600/2.0	0.044	work
rGO/MnO ₂ /S	Aerogel	67/0.8	1072/0.2	659/1.6	887/200/0.2	0.071	[1]
MnO ₂ @MXene/S	Aerogel	70/1.2	1140/0.05	615/2.0	731/500/1.0	0.06	[2]
MnO ₂ /NHCS/S	Nano-spheres	72/1.9	1283/0.2	1130/1.0	1283/500/0.2	0.067	[3]
MnO ₂ @GO/S	Double-shelled	52/0.6	976/0.02	269/1.5	1160/400/0.35	~0.14	[4]
MnO ₂ /GO/CNT/S	3D architecture	80/2.8	1500/0.05	960/1.0	963/100/0.2	0.162	[5]
Ti ₃ C ₂ /CF/S	3D framework	71/1.2	1380/0.1	510/5.0	581/1000/1.0	0.044	[6]
Ti ₃ C ₂ /rGO/ S	3D hybrid	70.4%/1.5	1190/0.2	923/2.0	1144/300/0.5	~0.077	[7]
Ti ₃ C ₂ /CNT/S	Interwoven	83/1.5	1216/0.05	1216/0.05	930/1200/0.5	0.043	[8]
TiO ₂ @Ti ₃ C ₂ /S	Nanosheets	80/1.5	1158/0.2	663/2.0	850/500/2.0	0.04	[9]
Ti ₃ C ₂ @PDA/S	Particle	78/5.0	1197/0.5	590/2.0	1000/1000/0.2	0.035	[10]
Ti ₃ C ₂ NDs/S	Nanosheets	67.6/1.8	1609/0.05	950/2.0	1085/400/2.0	0.057	[11]
Ti ₃ C ₂ T _x /MoS ₂ -C/S	Nano-hybrids	79/1.0	1195/0.1	677/2.0	799/300/0.5	0.07	[12]
Ti ₃ C ₂ @rGO/S	Aerogel	45/1.57	1270/0.1	699/1.0	596/500/1.0	0.07	[13]
Ti ₃ C ₂ T _x /Meso-C/S	Particle	72.8/2.0	1225/0.05	544/4.0	704/300/0.5	0.142	[14]
S@500-Ti ₃ C ₂ O _x	Hetero-structure	60/-	1540/0.5	705/5.0	662/1000/1.0	0.08	[15]
S@TiO ₂ /Ti ₂ CT _x	Nano-architecture	78/2.0	1408/0.2	576/2.0	464/200/2.0	0.05	[16]
Mo ₂ C-CNTs/S	Hybrid	87/1.8	1438/0.1	665/5.0	925/250/0.1	0.1	[17]
Mo ₂ C-C/S	Nano-octahedron	72/1.1	1396/0.1	1050/1.0	762/600/1.0	0.046	[18]

 Table S2. Comparisons among some other advanced sulfur cathodes for Li–S Batteries

3. Supplementary References

- [1] X. Zhao, H. Wang, G. Zhai, G. Wang, Chem., 2017, 23, 7037-7045.
- [2] H. Zhang, Q. Qi, P. Zhang, W. Zheng, J. Chen, A. Zhou, W. Tian, W. Zhang, Z. Sun, ACS Appl. Energy Mater., 2019, 2, 705-714.
- [3] M. Chen, Q. Lu, S. Jiang, C. Huang, X. Wang, B. Wu, K. Xiang, Y. Wu, Chem. Eng. J., 2018, 335, 831-842.
- [4] X.K. Huang, K.Y. Shi, J. Yang, G. Mao, J.H. Chen, J. Power Sources, 2017, 356, 72–79.
- Y. Li, D. Ye, W. Liu, B. Shi, R. Guo, H. Zhao, H. Pei, J. Xu, J. Xie, ACS Appl. Mater. Interfaces, 2016, 8, 28566-28573.
- [6] Q. Jin, L. Li, H. Wang, H. Gao, C. Zhu and X. Zhang, *Electrochimica Acta*, 2019, 312, 149-156.
- [7] W. Bao, X. Xie, J. Xu, X. Guo, J. Song, W. Wu, D. Su, G. Wang, *Chem.*, **2017**, *23*, 12613-12619.
- [8] X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Adv. Mater., 2017, 29, 1603040.
- [9] X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie, Y.T. Liu, J.Y. Yu, B. Ding, *Small*, 2018, 14, 1802443.
- [10] X. Wang, C. Yang, X. Xiong, G. Chen, M. Huang, J.-H. Wang, Y. Liu, M. Liu, K. Huang, *Energy Storage Mater.*, 2019, 16, 344-353.
- [11] Z. Xiao, Z. Li, P. Li, X. Meng, R. Wang, ACS Nano, 2019, 13, 3608-3617.
- Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li,
 X. Ge, W. Yang and S. Guo, *Adv. Funct. Mater.*, **2018**, 28, 1707578.
- [13] J. Song, X. Guo, J. Zhang, Y.Chen, C. Zhang, L. Luo, F. Wang, G. Wang. J. Mater. Chem. A. 2019; 7, 6507-6513.
- [14] W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, Adv. Funct. Mater. 2016, 26, 8746–8756.
- [15] H. Pan, X. Huang, R. Zhang, D. Wang, Y. Chen, X. Duan, G. Wen. Chem. Eng. J. 2019, 358, 1253-1261.
- [16] C. Du, J. Wu, P. Yang, S. Li, J. Xu and K. Song, *Electrochimica Acta*, 2019, 295, 1067-1074.
- [17] L. P. Lv, C. F. Guo, W. Sun and Y. Wang, Small, 2019, 15, 1804338.
- [18] G. Chen, Y. Li, W. Zhong, F. Zheng, J. Hu, X. Ji, W. Liu, C. Yang, Z. Lin, M. Liu, *Energy Storage Mater.*, 2020, 25, 547-554.