Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

# Phase transformation and room temperature stabilization of various Bi<sub>2</sub>O<sub>3</sub> nano-polymorphs: Effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species

Ashish Chhaganlal Gandhi, Chi-Yuan Lai, Kuan-Ting Wu, P. V. R. K. Ramacharyulu, Valmiki B. Koli, Chia-Liang Cheng, Shyue-Chu Ke and Sheng Yun Wu\*

Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan



Fig. S1 Rietveld refined PXRD spectra from Bi NPs and annealed samples.



Fig. S2 Annealing temperature  $T_A$  dependency of fitted values of lattice constants obtained from (a) Bi, (b)  $\beta$ -Bi<sub>2</sub>O<sub>3</sub>, (c)  $\gamma$ -Bi<sub>2</sub>O<sub>3</sub>, and (d)  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>.

## **Fig. S3** HRTEM images from $\beta$ -Bi<sub>2</sub>O<sub>3</sub> NPs.



## **Fig. S4** HRTEM images from $\gamma$ -Bi<sub>2</sub>O<sub>3</sub> NPs.



## **Fig. S5** HRTEM images from $\alpha$ /R-Bi<sub>2</sub>O<sub>3</sub> particles.









Fig. S7 (a)-(d) Raman spectra obtained from Bi and all annealed samples.

#### Fig. S8 Photodegradation of methylene blue dye solution using β-Bi<sub>2</sub>O<sub>3</sub> NPs

The photodegradation efficiency of  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> NPs (T<sub>A</sub> = 250 °C) was evaluated by photodegradation of the methylene blue (MB) dye aqueous solution. MB degradation was carried out under visible light irradiation by using a 65 W LED bulb. The UV light tubes were placed inside a square box. The 5 ppm MB dye solution with 20 mg of the photocatalyst in a glass beaker was magnetically stirred. The distance between the applied light source and the surface of the MB solution was 15 cm, and the photodegradation study was carried out at room temperature. To ensure the adsorption-desorption equilibrium, the whole suspension was magnetically stirred in the dark for 30 min at room temperature. Then the solution was irradiated with a LED light source. At the regular time interval, 3 ml of aliquots were withdrawn from the suspension and centrifuged immediately to separate the photocatalyst. The photodegradation change in the concentration of MB dye in the solution was analyzed using a UVvis spectrometer (Spectra Academy, SV2100) by measuring the absorbance in the wavelength range 500–750 nm, while double distilled water is used as a reference (Figure S5(a)). The normalized temporal concentration changes ( $C_t/C_0$  where  $C_0$  is the initial concentration of MB and  $C_t$  at the irradiation time t) of MB dye recorded during the photocatalytic process are proportional to the normalized integrated area of the absorbance curve, and it can be obtained from the change in the MB dye absorption profile at a given time interval (Figures S5(b)). β-Bi<sub>2</sub>O<sub>3</sub> NPs exhibited 19.06 % photodegradation of MB dye after 360 min of LED light irradiation, consistent with the literature.<sup>1</sup>





Fig. S9 Deconvoluted PL spectra obtained from Bi and all annealed samples.



**Fig. S10** Plot of annealing temperature T<sub>A</sub> dependency of the integrated area of various peaks obtained from PL spectra.



Fig. S11 Plot of PL emission spectra obtained from pure and the air annealed Bi ingots at various temperatures depicted in the figure.

**Fig. S12** Annealing temperature  $T_A$  dependency of (a) CIE (X, Y) coordinates and (b) CCT obtained from PL spectra of the pure and air annealed Bi NPs (solid dots) and ingots (open dots).



S15

**Fig. S13** (a) Magnetic hysteresis loop measured at 1.8 K from pure and the air annealed Bi NPs. (b) Annealing temperature  $T_A$  dependency of the estimated value of DC magnetic susceptibility ( $\chi$ ) from pure and the air annealed Bi NPs, where the solid red line is guided for eyes.



| Parameters          | Bi         | 50 °C      | 100 °C     | 150 °C     | 200 °C      |
|---------------------|------------|------------|------------|------------|-------------|
| a = b (Å)           | 4.4881(4)  | 4.4853(5)  | 4.4862(4)  | 4.4876(4)  | 4.4897(5)   |
| c (Å)               | 11.7048(5) | 11.6884(6) | 11.7009(6) | 11.7055(5) | 11.6965(13) |
| V (Å <sup>3</sup> ) | 204.19(3)  | 203.64(3)  | 203.95(3)  | 204.15(2)  | 204.19(2)   |
| Z                   | 0.2327(1)  | 0.2330(1)  | 0.2329(1)  | 0.2330(1)  | 0.2316(2)   |
| wR(%)               | 1.144      | 1.14       | 1.15       | 1.21       | 0.86        |
| GOF(%)              | 3.13       | 3.33       | 3.32       | 3.27       | 2.36        |
| Wt. fraction (%)    | 100        | 100        | 100        | 88.3(2)    | 18.8(1)     |

**Table S1** Summary of Rietveld refined fitted parameters for bismuth phase ( $\alpha = \beta = 90^\circ$ ,  $\gamma = 120^\circ$ , x = y = 0, space group  $R\Im m$ , No. 166).

| Paramete            | rs | 150 °C    | 200 °C    | 250 °C    | 300 °C     | 350 °C     | 400 °C    | 450 °C     | 500 °C     |
|---------------------|----|-----------|-----------|-----------|------------|------------|-----------|------------|------------|
| a = b (Å)           |    | 7.6403(6) | 7.6456(1) | 7.6448(1) | 7.6416(1)  | 7.64143(6) | 7.6424(1) | 7.6436(1)  | 7.8947(18) |
| <i>c</i> (Å)        |    | 5.5577(6) | 5.5645(1) | 5.5653(1) | 5.56764(4) | 5.56709(4) | 5.5649(1) | 5.56456(5) | 5.3697(19) |
| V (Å <sup>3</sup> ) |    | 324.43(5) | 325.27(1) | 325.26(1) | 325.117    | 325.07     | 325.03(1) | 325.11(1)  | 334.68(12) |
|                     | X  | 0.0134    | 0.0169    | 0.0166    | 0.0173     | 0.0179     | 0.0182    | 0.0176     | 0.0178     |
| Bi(1)               | у  | 0.2601    | 0.2540    | 0.2550    | 0.2543     | 0.2539     | 0.2552    | 0.2549     | 0.2537     |
|                     | Z  | 0.2522    | 0.2403    | 0.2399    | 0.2375     | 0.2378     | 0.2364    | 0.2373     | 0.2376     |
|                     | Х  | 0.4510    | 0.3047    | 0.3044    | 0.2914     | 0.2966     | 0.2818    | 0.2896     | 0.2949     |
| O(1)                | у  | 0.3312    | 0.3105    | 0.3103    | 0.3132     | 0.3144     | 0.3148    | 0.3202     | 0.3250     |
|                     | Z  | 0.1571    | 0.0295    | 0.0230    | 0.0121     | 0.0220     | 0.0121    | 0.0120     | 0.0287     |
| O(2)                | Z  | 0.3879    | 0.3843    | 0.3863    | 0.4036     | 0.41432    | 0.3833    | 0.3960     | 0.4184     |
| wR(%)               |    | 1.21      | 0.86      | 0.89      | 1.76       | 1.94       | 1.92      | 2.38       | 2.14       |
| GOF(%)              |    | 3.27      | 2.36      | 2.42      | 3.82       | 4.41       | 3.59      | 6.28       | 5.72       |
| WF (%)              |    | 11.7(3)   | 81.2(1)   | 100       | 90.8(3.8)  | 95.4(3.8)  | 66.5(4.2) | 66.4(3.2)  | 1.12(8)    |
| Bi(1)               |    | 0.91(12)  | 0.90(1)   | 0.828(8)  | 0.788(16)  | 0.965(19)  | 0.824(26) | 0.905(22)  | 1          |
| O(1)                |    | 1         | 1         | 1         | 1          | 1          | 1         | 1          | 1          |
| O(2)                |    | 1         | 1         | 0.95(2)   | 0.829(32)  | 0.939(33)  | 0.713(46) | 0.822(45)  | 1          |

**Table S2** Summary of Rietveld refined fitted parameters for  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> phase ( $\alpha = \beta = \gamma = 90^\circ$ ; O(2): x=0, y=0.5; space group  $P\bar{4}2_1c$ , No.114).

| Parameters          |       | 300 °C     | 350 °C      | 400 °C      | 450 °C     | 500 °C     | 550 °C     | 600 °C     | 650 °C     | 700 °C     |
|---------------------|-------|------------|-------------|-------------|------------|------------|------------|------------|------------|------------|
| a = b (Å)           |       | 10.1145(4) | 10.1335(34) | 10.1040(4)  | 10.1087(1) | 10.0994(1) | 10.1114(1) | 10.1105(1) | 10.1080(1) | 10.1062(2) |
| V (Å <sup>3</sup> ) |       | 1034.8(1)  | 1041(1)     | 1031.53(11) | 1032.98(4) | 1030.11(3) | 1033.82(3) | 1033.51(2) | 1032.75(2) | 1032.2(1)  |
|                     | х     | 0.8287     | 0.8244      | 0.8308      | 0.8262     | 0.8247     | 0.8244     | 0.8232     | 0.8234     | 0.8259     |
| Bi(1)               | у     | 0.6868     | 0.6801      | 0.6854      | 0.6817     | 0.6818     | 0.6801     | 0.6803     | 0.6808     | 0.6828     |
|                     | Z     | 0.9822     | 0.9881      | 0.9865      | 0.9877     | 0.9868     | 0.9881     | 0.9880     | 0.9872     | 0.9875     |
|                     | х     | 0.8112     | 0.8690      | 0.8170      | 0.8434     | 0.8538     | 0.8690     | 0.8682     | 0.8650     | 0.8362     |
| O(1)                | у     | 0.7655     | 0.7661      | 0.7736      | 0.7420     | 0.7487     | 0.7661     | 0.7537     | 0.7500     | 0.7116     |
|                     | Z     | 0.5217     | 0.4884      | 0.4810      | 0.5143     | 0.4856     | 0.4884     | 0.4836     | 0.4914     | 0.5431     |
| O(2)                | х     | 0.8182     | 0.8093      | 0.8422      | 0.8311     | 0.8057     | 0.8093     | 0.8097     | 0.8018     | 0.8292     |
| O(3)                | х     | 0.1284     | 0.1624      | 0.1453      | 0.2019     | 0.1426     | 0.162      | 0.1487     | 0.1384     | 0.1951     |
| wR(%)               |       | 1.76       | 1.94        | 1.92        | 2.38       | 2.14       | 2.460      | 2.63       | 2.65       | 4.35       |
| GOF(%)              |       | 3.82       | 4.41        | 3.59        | 6.27       | 5.72       | 4.71       | 5.26       | 4.64       | 7.98       |
| Wt. fraction        | n (%) | 7.1(1.3)   | 0.5(0.1)    | 14.6(5.0)   | 32.6(3.9)  | 98.3(0.1)  | 100        | 99.5(6.0)  | 92.2(1)    | 21*        |
| Bi(1)               |       | 0.98(9)    | 1           | 0.995(171)  | 0.872(53)  | 0.927(29)  | 0.9989(4)  | 0.975(29)  | 0.941      | 1          |
| Bi(2)               |       | 0.819(104) | 1           | 0.774(146)  | 0.825(43)  | 0.741(20)  | 0.943(8)   | 0.837(33)  | 0.733(5)   | 1          |
| O(1)                |       | 1          | 1           | 1           | 1          | 1          | 1.0104(17) | 0.993(33)  | 0.998(13)  | 1          |
| O(2)                |       | 1          | 1           | 0.841(202)  | 0.676(86)  | 0.668(35)  | 0.861(29)  | 0.965(38)  | 0.761(19)  | 1          |
| O(3)                |       | 1          | 1           | 1           | 1          | 0.766(42)  | 1.08(4)    | 1          | 1          | 1          |

**Table S3** Summary of Rietveld refined fitted parameters for  $\gamma$ -Bi<sub>2</sub>O<sub>3</sub> phase ( $\alpha$ = $\beta$ = $\gamma$ =90°; Bi(2): x=y=z=0; O(2) and O(3): x=y=z; space group *I*23, No. 197).

| Paramet             | ers | 300 °C     | 350 °C     | 400 °C     | 450 °C     | 500 °C     | 600 °C     | 650 °C     | 700 °C     | 750 °C     | 800 °C     |
|---------------------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| a (Å)               |     | 5.7763(55) | 5.7773(45) | 5.7779(8)  | 5.7768(32) | 5.7856(61) | 5.7792(15) | 5.7776(6)  | 5.7774(2)  | 5.7776(3)  | 5.7775(4)  |
| b (Å)               |     | 8.0695(7)  | 8.0710(5)  | 8.0638(1)  | 8.0712(6)  | 8.0507(6)  | 8.0660(3)  | 8.0655(1)  | 8.0663(1)  | 8.0654(1)  | 8.0639(1)  |
| c (Å)               |     | 7.4175(86) | 7.4170(7)  | 7.4164(13) | 7.4177(52) | 7.4146(94) | 7.4156(24) | 7.4183(9)  | 7.4185(4)  | 7.4178(5)  | 7.4173(7)  |
| $\beta$ (deg.)      | )   | 11298(2)   | 112.92(1)  | 112.981(3) | 113.01(1)  | 112.96(2)  | 112.995(5) | 112.982(2) | 112.977(1) | 112.978(1) | 112.977(1) |
| V (Å <sup>3</sup> ) |     | 318.31(4)  | 318.39(3)  | 318.12(1)  | 318.33(4)  | 318.00(3)  | 318.21(2)  | 318.25(1)  | 318.29(1)  | 318.24(1)  | 318.15(1)  |
|                     | х   | 0.5230     | 0.5267     | 0.5283     | 0.5283     | 0.5283     | 0.5283     | 0.5283     | 0.5241     | 0.5249     | 0.5223     |
| Bi(1)               | у   | 0.1842     | 0.1893     | 0.1847     | 0.1847     | 0.1847     | 0.1847     | 0.1847     | 0.1847     | 0.1832     | 0.1846     |
|                     | z   | 0.3580     | 0.3686     | 0.3656     | 0.3656     | 0.3656     | 0.3656     | 0.3656     | 0.3624     | 0.3593     | 0.3579     |
|                     | x   | 0.0395     | 0.0223     | 0.0352     | 0.0352     | 0.0352     | 0.0352     | 0.0352     | 0.0400     | 0.0389     | 0.0393     |
| Bi(2)               | у   | 0.0424     | 0.0336     | 0.0423     | 0.0423     | 0.0423     | 0.0423     | 0.0423     | 0.0419     | 0.0426     | 0.0428     |
|                     | z   | 0.7755     | 0.7784     | 0.7739     | 0.7739     | 0.7739     | 0.7739     | 0.7739     | 0.7753     | 0.7751     | 0.7755     |
|                     | x   | 0.7855     | 0.6927     | 0.7624     | 0.7624     | 0.7624     | 0.7624     | 0.7624     | 0.7824     | 0.7768     | 0.6927     |
| O(1)                | у   | 0.3225     | 0.4299     | 0.3094     | 0.3094     | 0.3094     | 0.3094     | 0.3094     | 0.3136     | 0.2919     | 0.4299     |
|                     | Z   | 0.7025     | 0.5839     | 0.7044     | 0.7044     | 0.7044     | 0.7044     | 0.7044     | 0.7206     | 0.7304     | 0.5839     |
|                     | x   | 0.2895     | 0.3106     | 0.2895     | 0.2895     | 0.2895     | 0.2895     | 0.2895     | 0.2438     | 0.2783     | 0.3106     |
| O(2)                | у   | 0.0346     | 0.0688     | 0.0346     | 0.0346     | 0.0346     | 0.0346     | 0.0346     | 0.0347     | 0.0467     | 0.0688     |
|                     | Z   | 0.1292     | 0.2031     | 0.1292     | 0.1292     | 0.1292     | 0.1292     | 0.1292     | 0.1345     | 0.1340     | 0.2031     |
|                     | x   | 0.2993     | 0.2712     | 0.2993     | 0.2993     | 0.2993     | 0.2993     | 0.2993     | 0.2648     | 0.2712     | 0.2712     |
| O(3)                | у   | 0.0629     | 0.0633     | 0.0629     | 0.0629     | 0.0629     | 0.0629     | 0.0629     | 0.0461     | 0.0605     | 0.0633     |
|                     | Z   | 0.5004     | 0.5282     | 0.5089     | 0.5089     | 0.5089     | 0.5089     | 0.5089     | 0.4815     | 0.4987     | 0.5282     |

**Table S4** Summary of Rietveld refined fitted parameters for  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> phase ( $\alpha$ = $\beta$ =90°, space group  $P2_1/c$ , No. 14).

| wR(%)                  | 1.76   | 1.94     | 1.92      | 2.38   | 2.14    | 2.63    | 2.65   | 4.35      | 7.31      | 6.73      |
|------------------------|--------|----------|-----------|--------|---------|---------|--------|-----------|-----------|-----------|
| GOF(%)                 | 3.82   | 4.41     | 3.59      | 6.27   | 5.72    | 5.26    | 4.64   | 7.98      | 13.89     | 12.36     |
| Wt.<br>fraction<br>(%) | 2.1(1) | 4.5(1)   | 18.9(2.2) | 0.8(3) | 0.60(5) | 0.45(4) | 7.8(1) | 70*       | 76*       | 75*       |
| Bi(1)                  | 1      | 1        | 0.858(49) | 1      | 1       | 1       | 1      | 0.698(21) | 1         | 0.821(47) |
| Bi(2)                  | 1      | 0.931(6) | 0.818(46) | 1      | 1       | 1       | 1      | 0.681(21) | 1         | 0.808(46) |
| O(1)                   | 1      | 1        | 1         | 1      | 1       | 1       | 1      | 0.771(36) | 0.592(36) | 0.668(82) |
| O(2)                   | 1      | 1        | 1         | 1      | 1       | 1       | 1      | 0.792(31) | 1         | 1         |
| O(3)                   | 1      | 1        | 1         | 1      | 1       | 1       | 1      | 1         | 1         | 1         |

| x-Bi | <sub>2</sub> O <sub>3</sub> |     |           | δ-Bi | <sub>2</sub> O <sub>3</sub> |       |
|------|-----------------------------|-----|-----------|------|-----------------------------|-------|
| No.  | 2θ (deg.)                   | No. | 2θ (deg.) | No.  | 2θ (deg.)                   | Ι     |
| 1    | 9.39                        | 15  | 26.89     | 1    | 14.96                       | 100   |
| 2    | 11.531                      | 16  | 27.78     | 2    | 17.29                       | 8.99  |
| 3    | 13.334                      | 17  | 28.605    | 3    | 24.55                       | 85.29 |
| 4    | 14.926*                     | 18  | 29.052    | 4    | 28.87                       | 66.25 |
| 5    | 16.17                       | 19  | 29.41     | 5    | 30.18                       | 8.32  |
| 6    | 16.368                      | 20  | 31.66     | 6    | 34.99                       | 6.63  |
| 7    | 17.484                      | 21  | 32.04     | 7    | 38.25                       | 12.24 |
| 8    | 21.202                      | 22  | 32.438    | 8    | 39.28                       | 16.51 |
| 9    | 22.253                      | 23  | 33.444    | 9    | 43.21                       | 13.95 |
| 10   | 22.983                      | 24  | 33.861    | 10   | 45.98                       | 8.26  |
| 11   | 23.259                      | 25  | 40.321    | 11   | 50.33                       | 4.16  |
| 12   | 23.932                      | 26  | 41.509    | 12   | 52.81                       | 13.23 |
| 13   | 24.226                      | 27  | 48.14     | 13   |                             |       |
| 14   | 26.058                      |     |           | 14   |                             |       |

**Table S5** List of 20 values obtained from x-Bi<sub>2</sub>O<sub>3</sub> is compared with reported  $\delta$ -Bi<sub>2</sub>O<sub>3</sub> (a = 5.4984 Å; Space group:  $Fm\Im m$  (No. 225); Lattice cites: Bi(0,0,0), O1(1/4,1/4,1/4), O2(0.324,x,x)).<sup>2</sup>

\*Most intense peak

| Τ.(°C)          | Gra | ain size (nn                     | n)                               |                                          |                                  | SEM         |           |
|-----------------|-----|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|-------------|-----------|
| $\Gamma_{A}(C)$ | Bi  | β-Bi <sub>2</sub> O <sub>3</sub> | γ-Bi <sub>2</sub> O <sub>3</sub> | $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> | x-Bi <sub>2</sub> O <sub>3</sub> | <d>(nm)</d> | σ         |
| 0               | 28  |                                  |                                  |                                          |                                  | 34.0(1)     | 0.30(4)   |
| 50              | 20  |                                  |                                  |                                          |                                  | 30.6(8)     | 0.21(4)   |
| 100             | 20  |                                  |                                  |                                          |                                  | 27.6(5)     | 0.25(3)   |
| 150             | 23  | 32                               |                                  |                                          |                                  | 27.4(4)     | 0.18(2)   |
| 200             | 6   | 46                               |                                  |                                          |                                  | 33.9(5)     | 0.18(2)   |
| 250             |     | 39                               |                                  |                                          |                                  | 31.8(4)     | 0.21(2)   |
| 300             |     | 62                               | 59                               | 125                                      |                                  | 40.5(6)     | 0.33(2)   |
| 350             |     | 62                               | 61                               | 115                                      |                                  | 41.7(7)     | 0.30(2)   |
| 400             |     | 65                               | 81                               | 252                                      |                                  | 52.9(1)     | 0.25(3)   |
| 450             |     | 72                               | 72                               | 136                                      |                                  | 61.1(1)     | 0.278(2)  |
| 500             |     | 52                               | 67                               | 162                                      |                                  | 64.5(6)     | 0.269(9)  |
| 550             |     |                                  | 90                               | 159                                      |                                  | 90(1)       | 0.25(2)   |
| 600             |     |                                  | 105                              | 192                                      |                                  | 131(3)      | 0.27(3)   |
| 650             |     |                                  | 125                              | 227                                      |                                  | 219.5(5)    | 0.29(4)   |
| 700             |     |                                  | 93                               | 207                                      | 53                               | 319(8)      | 0.303(34) |
| 750             |     |                                  |                                  | 234                                      | 86                               | 319(3)      | 0.27(1)   |
| 800             |     |                                  |                                  | 221                                      | 104                              | 470(3)      | 0.275(5)  |

**Table S6** Summary of estimated grain size from the most intense PXRD peak and the fitted parameters to the histogram obtained from SEM images of Bi and the air annealed samples.

| No. | Bi   | 50°C | 100°C | 150°C | 200°C | 250°C | 300°C | 350°C | 400°C | 450°C | 500°C | 550°C | 600°C | 650°C | 700°C | 750°C | 800°C |
|-----|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1   | 90   | 96   | 97    | 97    | 94    | 90    | 90    | 93    | 91    | 90    | 81    | 81    | 82    | 82    |       | 54    |       |
| 2   | 111  | 111  | 110   | 111   | 110   | 109   | 109   | 110   | 108   | 103   | 88    | 89    | 93    | 89    | 58    | 57    |       |
| 3   | 114  | 125  | 123   | 123   | 125   | 127   | 127   | 127   | 127   | 114   | 111   | 111   | 109   | 111   | 68    | 68    | 69    |
| 4   | 138  | 136  | 145   | 140   | 143   | 142   | 142   | 141   | 142   | 127   | 126   | 125   | 124   | 126   | 85    | 84    | 85    |
| 5   | 188  | 182  | 178   | 178   | 184   | 161   | 161   | 155   | 159   | 142   | 141   | 141   | 140   | 142   | 95    | 94    | 95    |
| 6   | 317  | 315  | 315   | 314   | 315   | 234   | 232   | 232   | 185   | 157   | 153   | 157   | 151   | 159   | 104   | 104   | 104   |
| 7   | 329  | 324  | 334   | 328   | 329   | 267   | 246   | 262   | 207   | 186   | 198   | 206   | 185   | 186   | 121   | 120   | 120   |
| 8   | 473  | 465  | 463   | 466   | 466   | 316   | 274   | 315   | 212   | 205   | 255   | 257   | 211   | 205   | 140   | 140   | 140   |
| 9   | 481  | 482  | 482   |       | 482   | 322   | 316   | 320   | 232   | 212   | 272   | 281   | 258   | 257   | 153   | 153   | 153   |
| 10  | 584  | 574  | 586   | 583   | 573   | 468   | 319   | 465   | 270   | 270   | 317   | 312   | 281   | 280   | 185   | 185   | 185   |
| 11  | 619* | 612* | 627*  | 623*  | 611*  | 472   | 467   | 467   | 316   | 316   | 359   | 344   | 313   | 313   | 211   | 211   | 211   |
| 12  |      |      |       |       |       | 591   | 502   | 482   | 320   | 320   | 382   | 381   | 334   | 338   | 254*  | 255*  | 254*  |
| 13  |      |      |       |       |       | 628*  |       | 505   | 450   | 450   | 438   | 436   | 380   | 380   | 282   | 281   | 281   |
| 14  |      |      |       |       |       |       |       | 606   | 467   | 468   | 482*  | 448   | 434   | 434   | 314   | 314   | 314   |
| 15  |      |      |       |       |       |       |       | 638*  | 471*  | 475*  | 516   | 481*  | 448   | 448   | 330   | 333   | 334   |
| 16  |      |      |       |       |       |       |       |       | 526   | 529   | 530   | 494   | 482*  | 482*  | 412   | 412   | 412   |
| 17  |      |      |       |       |       |       |       |       | 571*  | 569*  | 566*  | 528   | 518   | 500   | 436   | 434   | 438   |
| 18  |      |      |       |       |       |       |       |       | 616   | 606   | 621   | 567*  | 530   | 529   | 449   | 448   | 449   |
| 19  |      |      |       |       |       |       |       |       | 637   | 630   | 633   | 614   | 566*  | 567*  | 464   | 461   | 465   |
| 20  |      |      |       |       |       |       |       |       |       |       |       | 628   | 617   | 619   | 531   | 536   | 536   |
| 21  |      |      |       |       |       |       |       |       |       |       |       |       | 630   | 632   | 617*  | 622*  | 623*  |

**Table S7** Summary of fitted values of Raman scattering frequencies obtained from Bi and the air annealed samples.

\*Not assigned to any reported vibration mode.

| No. | Bi  | 50°C | 100°C | 150°C | 200°C | 250°C | 300°C | 350°C | 400°C | 450°C | 500°C | 550°C | 600°C | 650°C | 700°C | 750°C | 800°C |
|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1   | 23  | 26   | 27    | 28    | 22    | 14    | 14    | 18    | 15    | 16    | 9     | 10    | 10    | 9     |       | 2     |       |
| 2   | 9   | 13   | 10    | 9     | 14    | 31    | 28    | 18    | 28    | 20    | 13    | 15    | 12    | 13    | 4     | 2     |       |
| 3   | 28  | 15   | 25    | 19    | 13    | 11    | 11    | 13    | 11    | 25    | 25    | 23    | 16    | 18    | 4     | 5     | 5     |
| 4   | 49  | 45   | 35    | 35    | 40    | 21    | 21    | 12    | 19    | 11    | 10    | 10    | 13    | 10    | 9     | 7     | 7     |
| 5   | 31  | 32   | 31    | 33    | 28    | 17    | 13    | 24    | 14    | 15    | 12    | 14    | 9     | 13    | 9     | 9     | 9     |
| 6   | 23  | 20   | 26    | 25    | 21    | 16    | 12    | 11    | 7     | 16    | 45    | 23    | 20    | 22    | 5     | 5     | 5     |
| 7   | 7   | 55   | 66    | 58    | 54    | 49    | 11    | 34    | 7     | 7     | 24    | 14    | 8     | 27    | 9     | 8     | 8     |
| 8   | 37  | 30   | 35    | 47    | 32    | 16    | 37    | 16    | 8     | 6     | 22    | 27    | 12    | 18    | 7     | 7     | 7     |
| 9   | 5   | 6    | 6     |       | 3     | 51    | 14    | 49    | 7     | 8     | 33    | 28    | 25    | 25    | 10    | 10    | 10    |
| 10  | 65  | 35   | 59    | 46    | 45    | 21    | 40    | 40    | 34    | 36    | 49    | 36    | 25    | 34    | 11    | 11    | 11    |
| 11  | 49* | 60*  | 49*   | 47*   | 58*   | 52    | 28    | 17    | 15    | 16    | 38    | 54    | 32    | 32    | 13    | 13    | 13    |
| 12  |     |      |       |       |       | 44*   | 41    | 6     | 49    | 54    | 28    | 30    | 66    | 53    | 12*   | 13*   | 12*   |
| 13  |     |      |       |       |       |       |       | 49    | 23    | 22    | 27    | 12    | 24    | 31    | 32    | 29    | 29    |
| 14  |     |      |       |       |       |       |       | 51    | 18    | 17    | 5*    | 11    | 11    | 12    | 20    | 22    | 22    |
| 15  |     |      |       |       |       |       |       | 29*   | 41*   | 39*   | 46    | 5*    | 18    | 15    | 35    | 31    | 31    |
| 16  |     |      |       |       |       |       |       |       | 31    | 33    | 31    | 26    | 1*    | 5*    | 19    | 21    | 21    |
| 17  |     |      |       |       |       |       |       |       | 11*   | 18*   | 25*   | 34    | 41    | 30    | 20    | 19    | 24    |
| 18  |     |      |       |       |       |       |       |       | 29    | 5     | 12    | 22*   | 32    | 32    | 17    | 17    | 17    |
| 19  |     |      |       |       |       |       |       |       | 27    | 32    | 20    | 16    | 22*   | 21*   | 25    | 27    | 24    |
| 20  |     |      |       |       |       |       |       |       |       |       |       | 24    | 15    | 18    | 27    | 23    | 23    |
| 21  |     |      |       |       |       |       |       |       |       |       |       |       | 22    | 19    | 21*   | *30   | 23*   |

**Table S8** Summary of fitted values of FWHM of various phonon modes obtained from Bi and the air annealed samples.

\*Not assigned to any reported vibration mode.

**Table S9** Summary of fitted values of integrated area (I. A.) of various phonon modes obtained from Bi and the air annealed samples.

| No. | Bi    | 50°C  | 100°C | 150°C | 200°C | 250°C  | 300°C  | 350°C  | 400°C   | 450°C  | 500°C  | 550°C  | 600°C  | 650°C  | 700°C  | 750°C   | 800°C  |
|-----|-------|-------|-------|-------|-------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|
| 1   | 4552  | 14035 | 20081 | 17104 | 19660 | 46945  | 206968 | 139772 | 264039  | 180037 | 17648  | 83481  | 63696  | 68380  |        | 28      |        |
| 2   | 624   | 299   | 2150  | 1607  | 9050  | 134851 | 401264 | 109195 | 431953  | 82315  | 17944  | 78898  | 42987  | 47335  | 68     | 38      |        |
| 3   | 9177  | 5451  | 17035 | 7684  | 14443 | 36557  | 161052 | 97849  | 222184  | 157613 | 36421  | 147044 | 51361  | 59361  | 496    | 2274    | 1900   |
| 4   | 18383 | 16987 | 10470 | 8332  | 17502 | 35010  | 104119 | 18981  | 105374  | 133050 | 20805  | 128977 | 116978 | 118523 | 66614  | 77643   | 58608  |
| 5   | 1651  | 1617  | 2259  | 2163  | 1426  | 14208  | 29370  | 35388  | 43045   | 57586  | 7654   | 78006  | 21827  | 50594  | 101772 | 176890  | 136177 |
| 6   | 1395  | 9099  | 15980 | 8658  | 23729 | 2585   | 8892   | 2461   | 3412    | 39815  | 61937  | 76541  | 52294  | 50657  | 9871   | 18612   | 13586  |
| 7   | 89    | 9065  | 7902  | 6683  | 10219 | 12081  | 2599   | 5541   | 2510    | 3324   | 4747   | 7588   | 7726   | 9953   | 151734 | 258812  | 199632 |
| 8   | 1463  | 1801  | 736   | 1340  | 4289  | 177490 | 28773  | 238206 | 5959    | 1562   | 22523  | 244743 | 23168  | 12547  | 38621  | 96096   | 75701  |
| 9   | 121   | 257   | 318   |       | 111   | 87607  | 402463 | 235599 | 3092    | 6902   | 45110  | 173174 | 134700 | 160425 | 78913  | 174090  | 139057 |
| 10  | 4103  | 1522  | 7458  | 2727  | 3693  | 36623  | 480832 | 88008  | 43410   | 62841  | 114747 | 385620 | 117383 | 212848 | 120003 | 246495  | 193564 |
| 11  | 1233* | 5183* | 3677* | 2612* | 7652* | 32015  | 267898 | 24861  | 615687  | 408868 | 28486  | 348462 | 218755 | 225325 | 209476 | 446501  | 355856 |
| 12  |       |       |       |       |       | 6236*  | 16512  | 2759   | 714826  | 456733 | 19358  | 106712 | 286150 | 320767 | 11108* | 23431*  | 13603* |
| 13  |       |       |       |       |       |        |        | 16752  | 58078   | 52460  | 2253   | 1435   | 31166  | 103351 | 411103 | 832704  | 651709 |
| 14  |       |       |       |       |       |        |        | 4282   | 100257  | 58189  | 1436*  | 4063   | 4732   | 1649   | 590807 | 1023230 | 790509 |
| 15  |       |       |       |       |       |        |        | 3538*  | 167188* | 77220* | 47891  | 1195*  | 49501  | 4580   | 342036 | 485860  | 351346 |
| 16  |       |       |       |       |       |        |        |        | 54251   | 116203 | 100737 | 41940  | 3683*  | 4682*  | 73066  | 199766  | 145419 |
| 17  |       |       |       |       |       |        |        |        | 1125*   | 7526*  | 16691* | 633061 | 78699  | 52044  | 128275 | 251968  | 281265 |
| 18  |       |       |       |       |       |        |        |        | 9583    | 347    | 754    | 61076* | 296904 | 526159 | 296805 | 669892  | 537159 |
| 19  |       |       |       |       |       |        |        |        | 12142   | 11234  | 3786   | 5137   | 35779* | 43960* | 127604 | 225167  | 115444 |
| 20  |       |       |       |       |       |        |        |        |         |        |        | 29613  | 4485   | 16841  | 100123 | 165231  | 112938 |
| 21  |       |       |       |       |       |        |        |        |         |        |        |        | 15412  | 14970  | 30168* | 21545*  | 11183* |

\*Not assigned to any reported vibration mode.

**Table S10** Summary of fitted values of bandgap energy obtained from high-resolution Bi 4f XPS spectra of Bi,  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> (top), and  $\gamma$ - and  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> (bottom).

| Sample                                   | Bi <sup>3+</sup> 4f <sub>7</sub> | /2    |      | BiCOx  |       |      | Bi <sup>3+</sup> 4f <sub>5</sub> | /2    |      | _      |       |      |
|------------------------------------------|----------------------------------|-------|------|--------|-------|------|----------------------------------|-------|------|--------|-------|------|
| Sample                                   | B.E.                             | А     | FWHM | B.E.   | А     | FWHM | B.E.                             | А     | FWHM | _      |       |      |
| Bi                                       | 158.77                           | 16229 | 1.85 | 161.60 | 13694 | 3.91 | 163.59                           | 16441 | 1.85 | _      |       |      |
| $\beta$ -Bi <sub>2</sub> O <sub>3</sub>  | 158.51                           | 13451 | 1.94 | 161.19 | 23526 | 3.59 | 163.44                           | 33171 | 1.94 |        |       |      |
|                                          |                                  |       |      |        |       |      |                                  |       |      |        |       |      |
| Sample                                   | Bi <sup>3+</sup> 4f <sub>7</sub> | /2    |      | S      |       |      | Bi <sup>3+</sup> 4f <sub>5</sub> | /2    |      | S      |       |      |
| Sumple                                   | B.E.                             | А     | FWHM | B.E.   | А     | FWHM | B.E.                             | А     | FWHM | B.E.   | А     | FWHM |
| γ-Bi <sub>2</sub> O <sub>3</sub>         | 158.86                           | 34873 | 1.90 | 160.84 | 19040 | 2.10 | 164.19                           | 23286 | 1.90 | 166.11 | 13555 | 2.10 |
| $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> | 158.92                           | 27262 | 1.80 | 160.37 | 21188 | 1.86 | 164.27                           | 19068 | 1.80 | 165.69 | 14822 | 1.86 |

| Sample | Bi–O   |      |      | OH-    |      |      |        |      |      | O–C    |       |      |
|--------|--------|------|------|--------|------|------|--------|------|------|--------|-------|------|
| Sample | B.E.   | А    | FWHM | B.E.   | А    | FWHM | B.E.   | А    | FWHM | B.E.   | А     | FWHM |
| Bi     | 530.16 | 5462 | 2.84 |        |      |      | 531.82 | 2515 | 2.85 | 533.81 | 5390  | 3.21 |
| 250°C  | 529.97 | 3716 | 2.67 |        |      |      | 531.95 | 1534 | 2.9  | 533.0  | 13527 | 3.30 |
| 550°C  | 529.76 | 4640 | 1.70 | 530.89 | 4640 | 1.70 | 531.74 | 1715 | 2.79 |        |       |      |
| 700°C  | 530.19 | 7679 | 2.17 | 531.25 | 7679 | 2.17 | 531.79 | 2145 | 2.3  |        |       |      |

**Table S11** Summary of fitted values of bandgap energy obtained from high-resolution O1 s XPS spectra of Bi,  $\beta$ -,  $\gamma$ - and  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>.

| Sample | C-C   |      | С-О-С  |      | O-C=O  |      | C-Bi   |      | ?      |     |      |
|--------|-------|------|--------|------|--------|------|--------|------|--------|-----|------|
| Sumpre | B.E.  | А    | B.E.   | А    | B.E.   | А    | B.E.   | А    | B.E.   | А   | FWHM |
| Bi     | 284.8 | 1924 | 286.33 | 876  | 288.01 | 1228 | 289.19 | 1688 | 291.97 | 174 | 1.82 |
| 250°C  | 284.8 | 513  | 286.10 | 385  | 287.64 | 756  | 289.33 | 1788 | 292.50 | 385 | 2.01 |
| 550°C  | 284.8 | 2099 | 286.69 | 1220 | 288.49 | 808  | 289.66 | 237  |        |     | 1.87 |
| 700°C  | 284.8 | 2074 | 286.20 | 1378 | 288.61 | 839  | 290.00 | 454  |        |     | 1.83 |

**Table S12** Summary of fitted values of bandgap energy obtained from high-resolution C1 s XPS spectra of Bi,  $\beta$ -,  $\gamma$ - and  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>.

| Parameters   | Bi   | 50°C  | 100°C | 150°C | 200°C | 250°C | 300°C | 350°C | 400°C | 450°C | 500°C | 550°C | 600°C | 650°C | 700°C | 750°C | 800°C |
|--------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|              | 382  | 393   | 399   | 396   | 381   | 399   | 408   | 404   | 401   | 384   | 404   | 394   | 428   | 413   | 408   | 409   | 406   |
| Centre       | 534  | 482   | 486   | 485   | 504   | 551   | 555   | 515   | 525   | 531   | 477   | 487   | 514   | 498   | 500   | 486   | 482   |
| (nm)         | 593  | 586   | 586   | 583   | 593   | 595   | 589   | 585   | 588   | 588   | 587   | 588   | 588   | 585   | 584   | 582   | 585   |
|              | 699  | 699   | 697   | 696   | 695   | 698   | 689   | 701   | 699   | 699   | 693   | 701   | 696   | 694   | 698   | 695   | 698   |
|              | 36   | 43    | 54    | 58    | 45    | 50    | 84    | 55    | 76    | 16    | 39    | 57    | 76    | 73    | 67    | 66    | 58    |
| FWHM         | 91   | 108   | 128   | 93    | 94    | 113   | 92    | 129   | 130   | 90    | 87    | 115   | 112   | 112   | 93    | 114   | 107   |
| (nm)         | 40   | 61    | 61    | 59    | 38    | 37    | 61    | 67    | 58    | 66    | 59    | 61    | 64    | 64    | 60    | 59    | 63    |
|              | 126  | 121   | 125   | 129   | 113   | 135   | 134   | 126   | 121   | 123   | 129   | 120   | 128   | 128   | 126   | 133   | 124   |
|              | 81   | 194   | 396   | 619   | 111   | 159   | 1835  | 533   | 572   | 33    | 141   | 259   | 2345  | 2159  | 1300  | 1853  | 1350  |
| Intensity    | 584  | 653   | 1183  | 985   | 484   | 3614  | 10052 | 2799  | 2135  | 762   | 781   | 912   | 6702  | 7341  | 1389  | 5046  | 3088  |
| (Normalized) | 235  | 2406  | 2574  | 2770  | 286   | 258   | 5665  | 4513  | 1051  | 1933  | 3904  | 1657  | 4155  | 8285  | 4996  | 10810 | 9810  |
|              | 6236 | 15154 | 16039 | 16324 | 4596  | 11039 | 37503 | 27231 | 9383  | 13334 | 19307 | 11936 | 22148 | 41943 | 27617 | 58359 | 49769 |

**Table S13** Summary of fitted parameters to PL spectra of Bi and the air annealed samples.

|        | Anneale | d Bi NPs |      |        | Anneale |        |           |
|--------|---------|----------|------|--------|---------|--------|-----------|
| Sample | CIE     |          | CCT  | Sample | CIE     |        |           |
|        | X       | у        | (K)  |        | X       | у      | - CCI (K) |
| Bi     | 0.4521  | 0.4048   | 2766 | Bi     | 0.3215  | 0.3731 | 5915      |
| 50 °C  | 0.506   | 0.3955   | 2065 | 100 °C | 0.3279  | 0.4053 | 5655      |
| 100 °C | 0.4905  | 0.3903   | 2178 | 200 °C | 0.3264  | 0.3913 | 5713      |
| 150 °C | 0.5019  | 0.3932   | 2087 | 250 °C | 0.3104  | 0.3035 | 6905      |
| 200 °C | 0.4604  | 0.366    | 2333 | 300 °C | 0.3454  | 0.3604 | 5018      |
| 250 °C | 0.4291  | 0.4401   | 3406 | 400 °C | 0.2866  | 0.2968 | 8982      |
| 300 °C | 0.4796  | 0.445    | 2693 | 500 °C | 0.2944  | 0.2997 | 8200      |
| 350 °C | 0.4815  | 0.4098   | 2418 | 600 °C | 0.3206  | 0.3195 | 6129      |
| 400 °C | 0.4315  | 0.3943   | 3012 | 700 °C | 0.337   | 0.341  | 5301      |
| 450 °C | 0.4871  | 0.4204   | 2430 |        |         |        |           |
| 500 °C | 0.5006  | 0.3879   | 2063 |        |         |        |           |
| 550 °C | 0.4759  | 0.3819   | 2274 |        |         |        |           |
| 600 °C | 0.3989  | 0.3775   | 3535 |        |         |        |           |
| 650 °C | 0.439   | 0.385    | 2805 |        |         |        |           |
| 700 °C | 0.5014  | 0.3966   | 2115 |        |         |        |           |
| 750 °C | 0.4895  | 0.3926   | 2205 |        |         |        |           |
| 800 °C | 0.4949  | 0.3946   | 2164 |        |         |        |           |

**Table S14** Summary of CIE (X, Y) coordinates and CCT values obtained from PL spectra of pure and the air annealed Bi nanoparticles (left) and ingot (right).

**Table S15** Summary of various phase transformation reported in the literature.

| Phase Transformation                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description and Reference                                                                                                                                                                                                                            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                       | Oxidation of Bi in the air leads to the formation of $\alpha$ -, $\beta$ -, and $\delta$ -Bi <sub>2</sub> O <sub>3</sub> because of the coherent relationship between Bi and Bi <sub>2</sub> O <sub>3</sub> . Heating rate: 1 °C/min. <sup>3-5</sup> |  |  |  |  |  |
| Bi 200-220 °C β                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thermal oxidation of Bi nanotube array leads to the formation of $\beta$ -Bi <sub>2</sub> O <sub>3</sub> nanotube array. <sup>6</sup>                                                                                                                |  |  |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                      | The anodic bismuth trioxide layers were prepared via anodization of vacuum deposited Bi film in a citric acid-based electrolyte. <sup>7</sup>                                                                                                        |  |  |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                      | Thermal oxidation induced phase transformation of Bi thin film. Heating rate: 1 °C/min. <sup>8</sup>                                                                                                                                                 |  |  |  |  |  |
| $\begin{array}{c c} & \text{Multistep-slow} \\ \hline \textbf{Bi} & \underbrace{\begin{array}{c} 500 ^\circ\text{C} \\ \hline 5 \text{ h} \end{array}}_{ \delta} \underbrace{\begin{array}{c} \textbf{Bi} \\ \textbf{a} \\ \textbf{\beta} \\ \hline 10 \text{ h} \end{array}}_{ \delta} \underbrace{\begin{array}{c} \text{Fast-oxidation} \\ \hline 750 ^\circ\text{C} \\ \hline 10 \text{ h} \end{array}}_{ \delta} \\ \end{array}}_{ \delta \end{array}$ | A template heat-treatment induced conversion of Bi nanowire array<br>(diameter 60 nm) to Bi-Bi <sub>2</sub> O <sub>3</sub> core-shell nanowires and Bi <sub>2</sub> O <sub>3</sub> nanotubes<br>(diameter 75 nm). <sup>9</sup>                       |  |  |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                      | Structural evolution of $Bi_2O_3$ prepared by thermal oxidation of Bi nanoparticles in the air. Heating and cooling rate: 5 and 10°C/min. <sup>10</sup>                                                                                              |  |  |  |  |  |
| $\boxed{\textbf{Bi}} \xrightarrow{250 ^{\circ}\text{C}}_{2 \text{h}} \qquad \qquad \textbf{\beta} \xrightarrow{550 ^{\circ}\text{C}}_{2 \text{h}} \qquad \qquad \textbf{\gamma} \xrightarrow{750 ^{\circ}\text{C}}_{2 \text{h}} \qquad \qquad \textbf{a'}$                                                                                                                                                                                                  | <b>Current work:</b> The air annealed Bi nanoparticles leads to the structural evolution of $Bi_2O_3$ .                                                                                                                                              |  |  |  |  |  |

| $ \begin{array}{ c c c c c } \hline \boldsymbol{\beta} & \stackrel{640 \ ^{\circ}\mathrm{C}}{\underline{2} \ h} & \overbrace{\boldsymbol{\gamma}} \\ \hline \boldsymbol{\beta} & \stackrel{640 \ ^{\circ}\mathrm{C}}{\underline{4} \ h} & \overbrace{\boldsymbol{\gamma}} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bi <sub>2</sub> O <sub>3</sub> -BiFeO <sub>3</sub> Glass-ceramic sample <sup>11</sup>                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c } \hline & & \hline & & \hline & & \hline & & & \hline & & & \hline & & & & \hline & & & & \hline & & & & & \hline & & & & & \hline & & & & & & \hline & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & \hline & & & & & & \hline \\ & & & &$ | Impact of annealing in the air on phase transformation from $\beta$ -Bi <sub>2</sub> O <sub>3</sub> nanotube (diameter 5.5 nm) to $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> microcrystal (800 nm). <sup>12</sup>                                                             |
| $\beta \xrightarrow{452 ^{\circ}\text{C}} \alpha \xrightarrow{718 ^{\circ}\text{C}} \delta \xrightarrow{811 ^{\circ}\text{C}} l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The solid-state transition of $\beta$ -Bi <sub>2</sub> O <sub>3</sub> nanoparticles to bulk-phase evaluated using in situ XRD.                                                                                                                                              |
| $\begin{array}{c} \textcircled{0} \\ \end{array}{}$                              | The size effect (nanowire diameters: 10 nm $\beta$ -Bi <sub>2</sub> O <sub>3</sub> , 100 nm $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> ) for $\delta$ to liquid (1) phase transition but not the $\alpha$ or $\beta$ to $\delta$ phase transition in nanoscale. <sup>13</sup> |
| $(a) \xrightarrow{600 \ ^{\circ}C}{3iO_2} \qquad \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Bi_2O_3/Bi_2SiO_5$ fabricated via a facile one-step synthesis using $Bi(NO_3)_3$ and nano-SiO <sub>2</sub> as precursors. <sup>14</sup>                                                                                                                                    |
| $\begin{array}{ c c c c }\hline \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rod-like $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> and tetrahedral $\gamma$ -Bi <sub>2</sub> O <sub>3</sub> particles were fabricated by a facile solution crystallization method without any surfactants and/or templates. <sup>15</sup>                                    |
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polymorphs phase transformation of Bi <sub>2</sub> O <sub>3</sub> nanoparticles by the mechanical alloying method. <sup>16</sup>                                                                                                                                            |

| $\delta \xrightarrow{300 \circ C} \beta \xrightarrow{\beta} 400 \circ C \xrightarrow{\beta} \overline{\beta} \xrightarrow{600 \circ C} \alpha$                                            | Thermal oxidation of the nanocrystalline $\delta$ -Bi <sub>2</sub> O <sub>3</sub> thin-film. <sup>17</sup>                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c }\hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$                                                                                            | $\gamma$ -Bi <sub>2</sub> O <sub>3</sub> tetrahedra (built up of ultra-thin nanosheets via layer-by-layer self-assembly) were etched using NaBH <sub>4</sub> at 90 °C resulting in the formation of Bi nanoparticles. <sup>18</sup>          |
| $\delta \xrightarrow{\text{Electrolyte}}_{10 \text{ min}} Bi$                                                                                                                             | Reduction of $\delta$ -Bi <sub>2</sub> O <sub>3</sub> to Bi film using electrolyte gating for 10 min. <sup>19</sup>                                                                                                                          |
| δ Electrochemical <b>Bi</b>                                                                                                                                                               | Electrochemical reduction of $\delta$ -Bi <sub>2</sub> O <sub>3</sub> to granular Bi thin film. <sup>20</sup>                                                                                                                                |
| $\delta = \frac{750 \text{ °C/6.5h}}{780 \text{ °C/1.5h}} \qquad $ | Annealing of $\delta$ -Bi <sub>2</sub> O <sub>3</sub> in a dynamic vacuum (P = 1.33 Pa) initially at 750 °C for 6.5 h and then at 780 °C for 1.5 h leads to phase transformation to $\gamma$ -Bi <sub>2</sub> O <sub>3</sub> . <sup>21</sup> |

#### Notes and references

- 1. X. Chen, J. Dai, G. Shi, L. Li, G. Wang, and H. Yang, J. Alloys Compd., 2015, 649, 872-877.
- 2. J. A. H. Dreyer, S. Pokhrel, J. Birkenstock, M. G. Hevia, M. Schowalter, A. Rosenauer, A. Urakawa, W. Y. Teoh and L. Mädler, *CrystEngComm*, 2016, **18**, 2046-2056.
- 3. C.-C. Huang, T.-Y. Wen and K.-Z. Fung, Mater. Res. Bull, 2006, 41, 110-118.
- 4. C. C. Huang and K. Z. Fung, Mater. Res. Bull, 2006, 41, 1604-1611.
- 5. C. C. Huang, I. C. Leu and K. Z. Fung, Electrochem. Solid St. Lett., 2005, 8, A204.
- 6. B. Yang, M. Mo, H. Hu, C. Li, X. Yang, Q. Li and Y. Qian, Eur. J. Inorg. Chem., 2004, 2004, 1785-1787.
- 7. M. Ahila, J. Dhanalakshmi, J. C. Selvakumari and D. P. Padiyan, Mater. Res. Express, 2016, 3, 105025.
- 8. T. P. Gujar, V. R. Shinde and C. D. Lokhande, Appl. Surf. Sci., 2008, 254, 4186-4190.
- 9. L. Li, Y.-W. Yang, G.-H. Li and L.-D. Zhang, Small, 2006, 2, 548-553.
- A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Ñúñez and J. Arenas-Alatorre, SMCSYV, 2005, 18, 4-8.
- 11. F. H. Margha, E. K. Radwan, M. I. Badawy and T. A. Gad-Allah, ACS Omega, 2020, 5, 14625-14634.
- 12. H. Lu, B. Dong, S. Wang, L. Zhao, Z. Xu, L. Wan and J. Li, Phys. Status Solidi, 2012, 209, 2157-2160.
- 13. Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang and S. Yang, Mater. Lett., 2011, 65, 780-782.

- 14. H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao and Y. Zhu, Appl. Catal. B-Environ., 2018, 237, 59-67.
- 15. G. Liu, S. Li, Y. Lu, J. Zhang, Z. Feng and C. Li, J. Alloys Compd., 2016, 689, 787-799.
- 16. S. Bandyopadhyay, S. Dutta, A. Dutta and S. K. Pradhan, Cryst. Growth Des., 2018, 18, 6564-6572.
- 17. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye and G. H. Li, J. Phys. D, 2006, 39, 1939-1943.
- 18. Y. Wang and Y. Li, J. Colloid Interf. Sci., 2015, 454, 238-244.
- 19. L. Fan, Y. Zhu, Z. Wang, S. Zhao, Z. Liu, L. Zhu, X. Wang and Q. Zhang, Appl. Phys. Lett., 2019, 115, 261601.
- 20. Z. He, J. A. Koza, Y.-C. Liu, Q. Chen and J. A. Switzer, RSC Adv., 2016, 6, 96832-96836.
- 21. L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii and V. K. Fedotov, Russ. J. Inorg. Chem., 2007, 52, 1822-1829.