Supplemental Material

Doping controlled Fano resonance in bilayer 1T'-ReS₂: Raman experiments and first-principles theoretical analysis

Subhadip Das¹, Suchitra Prasad², Biswanath Chakraborty^{1,3}, Bhakti Jariwala⁴, Sai

Shradha⁴, D. V. S. Muthu¹, Arnab Bhattacharya⁴, U. V. Waghmare² and A. K. Sood^{1*}

¹Department of Physics, Indian Institute of Science, Bangalore 560012, India

² Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India

³ Present address: Department of Physics,

Indian Institute of Technology Jammu, Jammu-181221, J&K, India

⁴Department of Condensed Matter Physics and Materials Science,

Tata Institute of Fundamental Research, Mumbai 400005, India.

^{*} asood@iisc.ac.in

I. Polar plots of the out-of-plane Raman modes

Fig. S1: (a) Raman intensity variation of the A_g -like (a) L_1 and (b) L_2 modes with laser polarization angle θ in unpolarized collection configuration. Intensities of the peaks have been normalized using angular dependence of Si peak at ~ 520.5 cm⁻¹.

Fig. S2: (a) Drain current (I_{DS}) versus drain voltage (V_{DS}) at three different gate voltages. (b) Negligible gate to source current (red line) compared to the drain to source (blue line) current at 0.1V of drain to source voltage, confirming the absence of Faradaic current in our device transport measurements from Figs. 1(d) and (e) of the main text. (c) Experimental measurements of the frequency shift ($\Delta \omega = \omega (n \neq 0) - \omega (n = 0)$) and linewidth (γ) with electron doping (n) of the L₂ mode at $\theta = 90^{\circ}$. Gray region represents the transistor off-state ($V_G \leq V_{Th}$). (d) Calculated values of $\Delta \omega$ and EPC for the L₂ mode with n.

III. Behavior of the in-plane modes at $\theta = 90^{\circ}$

Fig. S3: (a) $\Delta \omega$ and γ versus n at $\theta = 90^o$ for the E_g-like modes.

IV. EPC measurement of trilayer ReSe₂

Using similar methods for experimental measurements and theoretical calculations used for bilayer ReS_2 (described in the main text), we have repeated our work on a trilayer ReS_2 transistor. $ReSe_2$ is isostructural to ReS_2 [1, 2], hence there are 18 Raman active mode with A_g symmetry [3]. Unlike ReS₂, the Raman modes of ReSe₂ has not been yet classified as in-plane or out-of-plane modes. Atomic force microscopic measurement (inset of Fig. S4(a)) reveals ~ 2.3 nm (3 layers) of sample thickness. Raman spectrum for trilayer ReSe₂ (Fig. S4(a) shows 14 modes, which are labeled from N_1 to N_{14} . The drain current (I_{DS}) with gate voltage (V_G) measurement (Fig. 4(b)) shows electron field-effect mobility of $\sim 0.41 \text{ cm}^2/\text{V.s}$ and current on-off ratio of $\sim 10^2$. Although these parameters are consistent with previous reports [4, 5], the n-type semiconducting behavior can be attributed to unintentional doping during growth process [4]. The Raman modes of trilayer ReSe_2 (Fig. S4(a)) at different gate voltages are fitted with a sum of Lorentzian functions to extract the phonon frequency (ω) and linewidth (γ) . All 14 modes show small changes in phonon frequency, with maximum phonon softening of $\sim 0.6~{\rm cm^{-1}}$ observed for N₇, N₁₁ and N₁₂ modes at n $\sim 5 \times 10^{13}/{\rm cm^2}$ (Figs. S5(a, b)). Similarly, the linewidth of all the modes (Figs. S6(a, b)) show little to no change with doping.

We find an indirect band gap of 0.93 eV and 1.02 eV of bulk ReSe₂ based on the calculation with and without the inclusion of spin-orbit coupling (SOC). Our results are in good agreement with the earlier theoretical and experimental findings of band gaps of bulk ReSe₂ [3, 6]. In trilayer ReSe₂, we have tried three different ABA stacking configurations. We displaced the middle layer of ReSe₂ by three different distances (d) and obtained the relative energy after z-direction relaxation. We find that the AAA stacking is the most stable of all (Table-S1). For trilayer ReSe₂, we see an indirect band gap of 1.12 eV and VBM is a bit away from Γ -point (Fig. S7(a)). After including the SOC in our calculations, we get an indirect band gap of 1.03 eV, with the VBM at Γ -point (Fig. S7(b)). We determined the electronic structure of trilayer ReSe₂ in the ABA stacking configuration (stacking 2), which has lower energy than the other ABA stacking configuration. We find an indirect band gap of 1.13 eV for ABA stacking of trilayer ReSe_2 (Fig. S7(c)). Also, the electronic structure does not change much with the stacking sequence. Since, AAA stacking (stacking 0) is the most stable of all, we used it in finding the effects of electron doping. We see negligible softening of phonon modes with electron doping (Figs. S5(c, d)). In addition, all the phonon modes show relatively weak coupling with electrons (Figs. S6(c, d)).

The direct band gaps of ReS₂ and ReSe₂ at Γ -point are 1.32 eV and 1.22 eV respectively (Figs. 5(a) and S7(a)). In contrast to ReS₂, ReSe₂ exhibits an indirect band gap of 1.12 eV (Fig. S7(a)). The VBM of ReS₂ has the highest density of states at Γ -point while, it is slightly offset from Γ in ReSe₂. Phonon frequencies are derived from the interatomic force constants which are linear response functions having a dominant contribution from the phonon mediated coupling between electronic states at CBM and VBM. Upon electron doping, the valley of CBM at K-point of ReSe₂ gets populated, while that at Γ -point gets populated in ReS₂. As a result, the frontier states at Γ -point are masked from contributing to phonon frequencies in ReS₂ resulting in changes in dominant terms in the interatomic force constant. Hence upon electron doping, a significant change in phonon frequencies of ReS₂ are observed, while little changes are seen in ReSe₂ (Fig. S8).

TABLE S1: Energies of stacking configurations (n), (E_n - E_0 , N=1,2) and relative displacements (d) between the middle layer of ReSe₂ with respect to bottom layer of trilayer ReSe₂.

Stackings	Energy (eV)	d (Å)
0	0	(-0.67, -2.19, 6.35)
1	0.34	(-1.48, -0.77, 6.35)
2	0.02	(-2.30, 0.65, 6.35)

Fig. S4: (a) Raman spectrum of trilayer ReSe₂. The modes are indicated as N₁ to N₁₄. Inset image shows the AFM height profile. (b) Drain current (I_{Ds}) as a function of the gate voltage (V_G) with drain voltage fixed at 0.4V. Inset shows the optical image of the device.

Fig. S5: $\Delta \omega$ versus n from experimental measurements (a, b) and theoretical calculations (c, d) in trilayer ReSe₂. Gray region indicates undoped regime.

Fig. S6: Experimentally measured γ (a, b) and calculated EPC (c, d) versus n. Gray region represents undoped regime.

Fig. S7: Electronic structures of trilayer ReSe_2 in stacking configuration 0 obtained with (a) SOC = 0, (b) $\text{SOC} \neq 0$. (c) Electronic structure of trilayer ReSe_2 with stacking 2 obtained with SOC=0.

Fig. S8: Schematic illustration of the coupling of electrons with phonons in ReS_2 and ReSe_2 .

V. Raman spectra at two different spots

Fig. S9: Different incident laser positions shown by a green dot in the device optical images during (a) doping and (b) dedoping cycle. (c) Raman spectra with the same peak positions taken on these two spots at $n \sim 3 \times 10^{13}/cm^2$ during doping and dedoping cycles at $\theta = 90^{\circ}$ and 0°, respectively. Black circles and blue lines are the experimental data points and their cumulative peak fits respectively. As evident from the figure, only the mode at ~ 153 cm⁻¹ (labeled L₃ in Fig. 1(c)) shows asymmetric broadening in the low frequency side with the

Fano parameter (1/q) of ~ -0.15, whereas other modes show symmetric Lorentzian lineshape. Red dashed lines are guide to the eye for Raman peak position for the in-plane

modes.

VI. Bulk band structure calculation of ReS_2

Fig. S10: Electronic band structure of bulk ReS₂ obtained using (a) LDA-USPP, (b) GGA-USPP and (c) LDA-USPP with SOC inclusion.

VII. EPC calculation in stacking 3

Fig. S11: (a) Electronic band structures of bilayer ReS₂ with stacking 3. (b) Variation in phonon frequencies and (c) electron-phonon coupling with electron doping concentration in bilayer ReS₂ (stacking 3), obtained from first-principles DFT calculations.

- H.-J. Lamfers, A. Meetsma, G. Wiegers, and J. De Boer, Journal of alloys and compounds 241, 34 (1996).
- [2] J. Wildervanck and F. Jellinek, Journal of the Less Common Metals 24, 73 (1971).
- [3] D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, ACS Nano 8, 11154 (2014).
- [4] B. Jariwala, D. Voiry, A. Jindal, B. A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, and A. Bhattacharya, Chemistry of Materials 28, 3352 (2016).

- [5] S. Yang, S. Tongay, Y. Li, Q. Yue, J.-B. Xia, S.-S. Li, J. Li, and S.-H. Wei, Nanoscale 6, 7226 (2014).
- [6] H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, Nano Research 8, 3651 (2015).