Electronic Supplementary Information

Enhanced room-temperature NO₂ sensing properties of biomorphic hierarchical mixed phase WO₃

He Lv^a, Zhuo Liu^a, Junkun Chen^a, Muhammad Ikram^a, Xue Bai^a, Jue Wang, Baihe Sun, Kan Kan^{*b}, and Keying Shi^{*a}

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and

Material Science, Heilongjiang University, Harbin, 150080, P. R. China. E-mail: shikeying2008@163.com

^b Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, P. R. China. E-mail:

kankan.has@foxmail.com

Table of contents

- P1 Cover page
- P2 Table of contents
- P3 **Table S1** The sensing performance of the single crystal phase WO_3 for NO_2 gas sensing
- P4 **Table S2** Comparison of gas sensing performance of the WO₃ based composite towards NO₂ gas with previous reported work.
- P5 **Table S3** Previous effort of mixed-phase materials used in different fields.
- P6 **Table S4** Previous effort of bio-template materials used in different fields.
 - **Table S5** Experimental conditions and crystal type of B-WO₃-ab and pure WO₃-ab materials.
- P7 Fig. S1 I_m and I_h values of hexagonal (JCPDS 33-1387) and monoclinic (JCPDS 72-0677) phases of (a) BC-WO₃-22, (b) BC-WO₃-04, and (c) BC-WO₃-24.
 - Fig. S2 Energy-dispersive X-ray spectroscopy (EDS) analysis of (a) B-WO₃-22, (b) B-WO₃-04, (c) B-WO₃-24.
- P8 **Fig. S3** XRD, FTIR and Raman of biomass carbon.
- P9 **Fig. S4** The TEM/HRTEM/SAED pattern images of B-WO₃-04.
 - **Fig. S5** The TEM Mapping images of B-WO₃-04.
- P10 Fig. S6 Nitrogen adsorption-desorption isotherms of hemp-derived biomass carbon and B-WO₃-ab.

Fig. S7 Comparison of the XPS full spectra of B-WO₃-22, B-WO₃-04 and B-WO₃-24.

 Table S6
 Contents of C, O, W, and Na in XPS of B-WO₃-22, B-WO₃-04 and B-WO₃-24.

- P11 Table S7 Response, response time and recovery time of B-WO₃-22, B-WO₃-04, and B-WO₃-24 sensors.
 Fig. S8 Dynamic response-recovery curve of pure WO₃-40 and WO₃-04.
 Table S8 Response, response time and recovery time of WO₃-40 and WO₃-04.
- Fig. S9 Response of the B-WO₃-04 sensor to100 ppm NO₂ as a function of the relative humidity.
 Table S9 Fitted impedance parameters of B-WO₃-22, B-WO₃-04, and B-WO₃-24 samples.
 References

Morphology	Crystal type of WO ₃	NO₂ (ppm)	Operating temperature (℃)	Response	LOD	Ref.
nanoparticles	hexagonal or monoclinic	5	100	251.7	50 ppb	1
nanotubes	monoclinic	5	300	100.3	>20 ppb	2
nanorods	monoclinic	10	225	2.02	2 ppm	3
nanosheets	Hexagonal or monoclinic	1	100	62.1	100 ppb	4
thin films	monoclinic	5	150	5.75	1 ppm	5
nanoplates	orthorhombic	5	100	10	1 ppm	6
dendrites	hexagonal	5	140	32.9	20 ppb	7
ultrathin nanosheet	monoclinic	50 ppb	140	5.67	10 ppb	8
thin film	monoclinic	200	200	38%	50 ppm	9
flower-like	monoclinic	80 ppb	90	190.8	5 ppb	10
yolk–shell spheres	monoclinic	100 ppb	100-200	120	30 ppb	11
cuboid or hexagonal plate-like	monoclinic or hexagonal	20 ppb 500 ppb	200 200	160 120		12

Table S1 The sensing performance of the single crystal phase WO_3 for NO_2 gas sensing.

Sensing materials	NO₂ (ppm)	Operating temperature (℃)	Respons e	t _{res} /t _{rec}	LOD	Recover- ability	Refs.
APTES-							
functionalized	10	340	184	11s/12s	10 ppb	complete	13
porous WO ₃							
Au@WO₃	5	100	136	4s/59s	250ppb	complete	14
Sb-doped WO ₃	2	70	343	70s/50s	0.5ppm	incomplete	15
Au NP-decorated WO_3	1	150	96	9s/16s	0.6ppm	complete	16
Pd-doped WO_3	5	150	283.96	26s/66s	50ppb	complete	17
WO₃/ZnO	1	150	168		250ppb	complete	18
Au-doped WO_3	5	175	212.3	10s/120s	50ppb	complete	19
WO ₃ –rGO	10	90	4.3	4.1s/5.8s		complete	20
Sb-WO ₃	10	RT	51		1ppm	incomplete	21
Bis-crystalline phase WO ₃	100	RT	71.07	3s/11.6s	50ppb	complete	Present work

Table S2Comparison of gas sensing performance of the WO_3 based composite towards NO_2 gas with previous

reported work.

Materials	Synthesis process	Applications	References
2H and 1T mixed phase few- layer MoS ₂	hydrothermal	photocatalytic hydrogen evolution	22
rutile and anatase phase ${\rm TiO}_2$	electrochemical anodization	photocatalytic	23
anatase / rutile phase TiO_2	electrochemical anodization	photoelectrochemical	24
2H and 1T mixed phase MoS_2	solution-exfoliated and anneal	hydrogen evolution	25
amorphous/crystalline Ga ₂ O ₃	radio frequency(RF) magnetron sputtering growth technique	Solar-Blind Photodetection	26
anatase/rutile/srilankite phase TiO ₂	flame synthesis	photocatalytic hydrogen evolution	27
rhombohedral and tetragonal phase BiFeO ₃	microscopic resistive switching device	epitaxially strained thin film of BFO	28
monoclinic hexagonal phase WO ₃	photocatalytic water splitting	solvothermal	29
rutile/anatase phase TiO_2	magnetron sputtering deposition	photocatalysts	30
Nb-doped natase and utile phase TiO ₂	deposition	photocatalysts	31
anatase /rutile phase TiO ₂	framework vanadium doping and heat treatments	photocatalysts	32
α – β mixed-phase Ga ₂ O ₃		photocatalytic water splitting	33
α – δ mixed-phase FAPbI ₃	anneal	near-infrared emission	34

Table S3Previous effort of mixed-phase materials used in different fields.

Biomass	Based	Cumthonia ana ana	Annlingtions	Defe
Materials	Materials	Synthesis process	Applications	Rets.
kiwi naal	NIC	bud roth ormal	electro-chemical	34
kiwi peel	INIS ₂	nyurotnermai	sensor	
wood	MnO	bydrothormal	electromagnetic wave	35
woou	MIIO	nyurotnermai	absorption	
absorbant catton	7nO	impregnation and	H S gas consing	36
	2110	calcination		
enteromorpha	MoO-	freezer drying	glucose colorimetric	37
prolifera	101003	ineezer drynig	assay	
cellulose	WOa	electrospinning	H_S gas-sensing	38
nanocrystals	VVO 3	electrospinning		
eucheuma	CdS	freezer drying	photocatalytic	39
cuchcumu	Cus	incezer arying	hydrogen evolution	
waste paper	WOa	tubular coking furnace	electrochemical	40
pieces	VVO 3		materials	
carrageenan	FoS	calcination in CO_2	sodium-Ion	41
Callageenan	165	atmosphere	batteries	
soowood fibor	SnO	wat spipping	triethylamine	42
seaweeu noel	31102	wet-shimming	detection	

Table S4Previous effort of bio-template materials used in different fields.

 Table S5
 Experimental conditions and crystal type of B-WO₃-ab and pure WO₃-ab materials.

Samples	Time	e (h)	Crustal turo
Samples	350 ℃	450 ℃	Crystal type
B-WO ₃ -22	2h	2h	h-WO ₃ m-WO ₃
B-WO ₃ -04	0h	4h	h-WO ₃ m-WO ₃
B-WO ₃ -24	2h	4h	h-WO ₃ m-WO ₃
WO ₃ -40	4h	0h	h-WO ₃
WO ₃ -04	0h	4h	m-WO ₃

Fig. S1 I_m and I_h values of hexagonal (JCPDS 33-1387) and monoclinic (JCPDS 72-0677) phases of (a) BC-WO₃-22, (b) BC-WO₃-04, and (c) BC-WO₃-24.

Fig. S2 Energy-dispersive X-ray spectroscopy (EDS) analysis of (a) B-WO₃-22, (b) B-WO₃-04, (c) B-WO₃-24.

Fig. S3 XRD, FTIR and Raman of biomass carbon.

Fig. S3a exhibited two broad peaks at around 22° corresponding to the (002) and 43° corresponding to the (100) plane of graphite, suggesting the formation of the carbon product with a limited graphitization degree. Fig. S3b shows a broad absorption bands around 3410 cm⁻¹ is assigned to the stretching vibrations of the O–H groups and the bending vibrations of a small quantity of adsorbed water molecules. And a weak absorbance around 1708 cm⁻¹ in the FTIR spectrum of biomass carbon, which might be attributed to the presence of the carboxylic ester (C=O) in pectin and waxes. The benzene ring and side chain of lignin have the inherent C=C bond of biomass and the absorption peak is located at 1570 cm⁻¹. The carbon material prepared by nitric acid activation has a distinct peak here, indicating that the use of nitric acid can increase C=C. The observed peaks at 1679 and 832 cm⁻¹, which are ascribed to a stretching vibration. The presence of C–O bonds in various chemical surroundings have been shown to be within the 1356–950 cm⁻¹ range. It should be noted that the 1184 cm⁻¹ bands are normally ascribed to O–H bending vibrations.⁴³⁻⁴⁶ The chemical functional group -COOH produced during the strong acid treatment (chemical oxidation) enhanced the hydrophilicity of biomass carbon and improved its dispersibility in the WO₃ matrix.⁴⁷⁻⁴⁹

Fig. S4 The TEM/HRTEM/SAED pattern images of B-WO₃-04.

Fig. S5 The TEM Mapping images of $B-WO_3-04$.

Fig. S6 Nitrogen adsorption-desorption isotherms of hemp-derived biomass carbon and B-WO₃-ab.

Fig. S7 Comparison of the XPS full spectra of B-WO₃-22, B-WO₃-04 and B-WO₃-24.

Table S6	Contents of C, O, W, and Na in XPS of B-WO ₃ -22, B-WO ₃ -04 and B-WO ₃ -24.							
Samples	C (at%)	O (at%)	W (at%)	Na (at%)				
B-WO ₃ -22	55.42	29.81	12.45	2.32				
B-WO ₃ -04	16.43	52.83	27.23	3.51				
B-WO ₃ -24	12.66	59.62	23.57	4.15				

Sensors		B-WO ₃ -22 B			B-WO ₃ -04			B-WO ₃ -24	
NO₂(ppm)	R	Ts	Tr	R	Ts	Tr	R	Ts	Tr
100	57.45	6.40	29.2	71.07	3	11.6	37.52	7.13	36.4
50	51.72	9.07	37.6	60.09	4.53	21.2	35.45	7.60	46.8
30	45.52	10.13	53.6	51.09	4.97	22	30.72	8.40	48.8
10	21.92	11.73	53.2	27.49	6	31.8	22.92	9.13	53.2
5	16.48	11.27	56	17.29	7.27	32	12.48	9.80	51.2
3	4.29	11.73	53.2	5.69	7	42.4	4.29	10.07	52.4
1	2.39	13.87	37.2	2.63	9	46	2.39	11.73	52.8
0.5	1.98	12.27	37.4	2.52	9.96	48.6	1.98	13.87	67.6
0.3	1.84	14.27	42.4	2.08	12.8	45.6	1.34	14.27	40.4
0.1	1.38	15.73	37	1.65	12.27	28.4	1.18	14.80	42.8
0.05	1.12	16.40	29.2	1.38	11.2	20.8			

Table S7Response, response time and recovery time of B-WO₃-22, B-WO₃-04, and B-WO₃-24 sensors.

*R: Response T_s: Response time T_r: Recovery time

WO₃-40 (hexagonal) WO₃-04(monoclinic) Resistance (×10⁵ Ω) Resistance (×10⁵ Ω) 0.5 0.1 ć 0+ 0 1200 1500 Ò Time (s) Time(s)

Fig. S8 Dynamic response-recovery curve of pure WO₃-40 and WO₃-04.

Sensors		WO ₃ -40			WO ₃ -04	
NO ₂ (ppm)	R	Τs	Tr	R	Τs	T,
100	11.45	10.40	41.2	25.07	12	46.2
50	10.72	10.07	47.6	21.59	14.53	50.6
30	8.52	11.13	53.6	17.09	19.97	53.6
10	6.92	12.73	53.2	8.49	26	63.2
5	5.48	11.27	56	6.29	27.27	69
3	4.29	12.53	53.2	5.69	27	73.2
1	2.09	13.17	37.2	2.63	29	78.2
0.5	1.18	14.57	37.4	2.12	29.96	77.4
0.3				1.68	22.8	71.2
0.1				1.05	22.27	66.8

Table S8 Response, response time and recovery time of WO_3 -40 and WO_3 -04.

Fig. S9 Response of the B-WO₃-04 sensor to 100 ppm NO₂ as a function of the relative humidity.

Table S9	Fitted impedance parameters of B-WO ₃ -22, B-WO ₃ -04, and B-WO ₃ -24 sa							
	Samples	B-WO ₃ -22	B-WO ₃ -04	B-WO ₃ -24				
	R _s (Ω)	78	58	61				
	R _{ct} (Ω)	834.9	537.8	691.6				

References

- 1. T. Li, Y. Shen, S. Zhao, X. Zhong, W. Zhang, C. Han, D. Wei, D. Meng and Y. Ao, Journal of Alloys and Compounds, 2019, 783, 103-112.
- W.-T. Koo, S.-J. Choi, N.-H. Kim, J.-S. Jang and I.-D. Kim, Sensors and Actuators B: Chemical, 2016, 223, 301-310.
- 3. B. Behera and S. Chandra, Materials Science in Semiconductor Processing, 2018, 86, 79-84.
- 4. Z. Wang, M. Hu, Y. Wei, J. Liu and Y. Qin, Applied Surface Science, 2016, 362, 525-531.
- S. S. Shendage, V. L. Patil, S. P. Patil, S. A. Vanalakar, J. L. Bhosale, J. H. Kim and P. S. Patil, Journal of Analytical and Applied Pyrolysis, 2017, 125, 9-16.
- S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim and P. S. Patil, Sensors and Actuators B: Chemical, 2017, 240, 426-433.
- 7. B. Xiao, D. Wang, F. Wang, Q. Zhao, C. Zhai and M. Zhang, Ceramics International, 2017, 43, 8183-8189.
- 8. Z. Wang, D. Wang and J. Sun, Sensors and Actuators B: Chemical, 2017, 245, 828-834.
- 9. V. V. Ganbavle, S. V. Mohite, J. H. Kim and K. Y. Rajpure, Current Applied Physics, 2015, 15, 84-93.
- 10. Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu and Y. Du, Sensors and Actuators B: Chemical, 2013, 186, 734-740.

- J.-S. Kim, J.-W. Yoon, Y. J. Hong, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan and J.-H. Lee, Sensors and Actuators B: Chemical, 2016, 229, 561-569.
- 12. Z. Meng, A. Fujii, T. Hashishin, N. Wada, T. Sanada, J. Tamaki, K. Kojima, H. Haneoka and T. Suzuki, Journal of Materials Chemistry C, 2015, 3, 1134-1141.
- X. Jie, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu and C. Xie, Sensors and Actuators B: Chemical, 2015, 220, 201-209.
- 14. Parag V. Adhyapak, A. D. Bang, P. More and N. R. Munirathnam, RSC Advances, 2018, 8, 34035-34040.
- 15. W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou, B. Dong, X. Bai, S. Zhang, G. Lu and H. Song, Journal of Materials Chemistry A, 2018, 6, 10976-10989.
- 16. S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han, Q. Zhao and D. Wei, Sensors and Actuators B: Chemical, 2019, 282, 917-926.
- 17. J. Qi, K. Chen, Y. Xing, H. Fan, H. Zhao, J. Yang, L. Li, B. Yan, J. Zhou, L. Guo and S. Yang, Nanoscale, 2018, 10, 7440-7450.
- 18. H. Zhang, Y. Wang, X. Zhu, Y. Li and W. Cai, Sensors and Actuators B: Chemical, 2019, 280, 192-200.
- 19. T. Li, Y. Shen, X. Zhong, S. Zhao, G. Li, B. Cui, D. Wei and K. Wei, Journal of Alloys and Compounds, 2020, 818, 152927.
- 20. J. Sun, L. Sun, N. Han, J. Pan, W. Liu, S. Bai, Y. Feng, R. Luo, D. Li and A. Chen, Sensors and Actuators B: Chemical, 2019, 285, 68-75.
- 21. Y. Shen, T. Li, X. Zhong, G. Li, A. Li, D. Wei, Y. Zhang and K. Wei, Vacuum, 2020, 172, 109036.
- 22. Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao and H. Yu, Applied Catalysis B: Environmental, 2019, 241, 236-245.
- P. Bamola, A. Bhoumik, C. Dwivedi, V. Kaushik and H. Sharma, Materials Today: Proceedings, 2020, DOI: 10.1016/j.matpr.2020.01.046.
- 24. C. Ai, P. Xie, X. Zhang, X. Zheng, J. Li, A. Kafizas and S. Lin, ACS Sustainable Chemistry & Engineering, 2019, 7, 5274-5282.
- 25. T. Sun, H. Zhang, X. Wang, J. Liu, C. Xiao, S. U. Nanayakkara, J. L. Blackburn, M. V. Mirkin and E. M. Miller, Nanoscale Horizons, 2019, 4, 619-624.
- Y. Wang, W. Cui, J. Yu, Y. Zhi, H. Li, Z. Y. Hu, X. Sang, E. J. Guo, W. Tang and Z. Wu, ACS Appl Mater Interfaces, 2019, 11, 45922-45929.
- 27. S. Wu, W. Wang, W. Tu, S. Yin, Y. Sheng, M. Y. Manuputty, M. Kraft and R. Xu, ACS Sustainable Chemistry &

Engineering, 2018, 6, 14470-14479.

- D. Edwards, N. Browne, K. M. Holsgrove, A. B. Naden, S. O. Sayedaghaee, B. Xu, S. Prosandeev, D. Wang, D. Mazumdar, M. Duchamp, A. Gupta, S. V. Kalinin, M. Arredondo, R. G. P. McQuaid, L. Bellaiche, J. M. Gregg and A. Kumar, Nanoscale, 2018, 10, 19638-19638.
- 29. Y. H. Chew, J. Y. Tang, L. J. Tan, B. W. J. Choi, L. L. Tan and S. P. Chai, Chem Commun (Camb), 2019, 55, 6265-6268.
- 30. Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan and C. Li, J Phys Chem Lett, 2017, 8, 1419-1423.
- 31. Y. Min, X. Yang, D. Wang, K. Yang, S. Zheng, S. Li, H. Chen, J. Liang and F. Pan, Catalysis Science & Technology, 2019, 9, 6027-6036.
- 32. Z. Luo, A. S. Poyraz, C.-H. Kuo, R. Miao, Y. Meng, S.-Y. Chen, T. Jiang, C. Wenos and S. L. Suib, Chemistry of Materials, 2014, 27, 6-17.
- 33. M.-G. Ju, X. Wang, W. Liang, Y. Zhao and C. Li, J. Mater. Chem. A, 2014, 2, 17005-17014.
- 34. Z. Lu, Y. Li, T. Liu, G. Wang, M. Sun, Y. Jiang, H. He, Y. Wang, P. Zou, X. Wang, Q. Zhao and H. Rao, Chemical Engineering Journal, 2020, 389, 124417.
- S. Dong, W. Tang, P. Hu, X. Zhao, X. Zhang, J. Han and P. Hu, ACS Sustainable Chemistry & Engineering, 2019, 7, 11795-11805.
- H. B. Na, X. F. Zhang, Z. P. Deng, Y. M. Xu, L. H. Huo and S. Gao, ACS Appl Mater Interfaces, 2019, 11, 11627-11635.
- H. Ren, L. Yan, M. Liu, Y. Wang, X. Liu, C. Liu, K. Liu, L. Zeng and A. Liu, Sensors and Actuators B: Chemical, 2019, 296, 126517.
- D. H. Kim, J. S. Jang, W. T. Koo, S. J. Choi, H. J. Cho, M. H. Kim, S. J. Kim and I. D. Kim, ACS Sens, 2018, 3, 1164-1173.
- F. Quan, J. Zhang, D. Li, Y. Zhu, Y. Wang, Y. Bu, Y. Qin, Y. Xia, S. Komarneni and D. Yang, ACS Sustainable Chemistry & Engineering, 2018, 6, 14911-14918.
- 40. Y. Xiong, C. Wang, C. Jin, Q. Sun and M. Xu, ACS Sustainable Chemistry & Engineering, 2018, 6, 13897-13906.
- 41. D. Li, Y. Sun, S. Chen, J. Yao, Y. Zhang, Y. Xia and D. Yang, ACS Appl Mater Interfaces, 2018, 10, 17175-17182.
- 42. Y. Zou, S. Chen, J. Sun, J. Liu, Y. Che, X. Liu, J. Zhang and D. Yang, ACS Sens, 2017, 2, 897-902.
- 43. F. Ma, J. Li, W. Li, N. Lin, L. Wang and J. Qiao, Chem Sci, 2017, 8, 800-805.
- 44. Q. Hao, T. Liu, J. Liu, Q. Liu, X. Jing, H. Zhang, G. Huang and J. Wang, RSC Advances, 2017, 7, 14192-14199.
- 45. S. Bai, Y. Ma, X. Shu, J. Sun, Y. Feng, R. Luo, D. Li and A. Chen, Industrial & Engineering Chemistry Research,

2017, 56, 2616-2623.

- 46. D. Dai and M. Fan, Materials Sciences and Applications, 2010, 01, 336-342.
- 47. W. J. Zhao, Q. X. Hu, N. N. Zhang, Y. C. Wei, Q. Zhao, Y. M. Zhang, J. B. Dong, Z. Y. Sun, B. J. Liu, L. Li and W. Hu, RSC Advances, 2017, 7, 32236-32245.
- 48. W. Fang, Y. Yang, H. Yu, X. Dong, T. Wang, J. Wang, Z. Liu, B. Zhao and M. Yang, RSC Advances, 2016, 6, 106880-106886.
- 49. N. Lu, R. H. Swan and I. Ferguson, Journal of Composite Materials, 2011, 46, 1915-1924.