Electronic Supplementary Information

CoP and Ni₂P implanted in hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting

Fig. S1 (a) XRD and (b) TEM image of ZIF-67

Fig. S2 (a) XRD patterns, (b) SEM image, (c) low magnification and (d) high magnification TEM image and (e) HAADF-STEM image and corresponding elemental mapping of Co/Ni-LDH@ZIF-67.

Fig. S3 (a) XRD patterns, (b) low magnification and (c) high magnification SEM images, (d) TEM image, (e) HAADF-STEM image and corresponding EDS elemental mapping of the as-synthesized Co,Ni@HPNCP.

Fig. S4 (a) XRD patterns, (b) SEM image, (c) TEM image, (d) HAADF-STEM image and corresponding EDS elemental mapping of the as-synthesized Co@NCP. Inset in (b) is magnified SEM image.

Fig. S5 HER LSV curves of CoP/Ni₂P@HPNCP fabricated by phosphorization of Co/Ni@HPNCP with and without oxidation treatment in air.

Fig. S6 (a) TGA curves of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP in air, (b) XRD patterns of the residue after pyrolysis of CoP/Ni₂P@HPNCP and CoP@NCP.

The final residue (114.3 wt%) is $Co(PO_3)_2$ and $Ni(PO_3)_2$ based on TGA and XRD. Therefore, the relatively content of CoP and Ni_2P in CoP/Ni₂P@HPNCP can be calculated by following equation:

 $(X/M(CoP)) \times M(Co(PO_3)_2) + (Y/M(Ni_2P)) \times 2 \times M(Ni(PO_3)_2) = 1.143$

where, M(CoP), M(Co(PO₃)₂), M(Ni₂P) and M(Ni(PO₃)₂) is the molar mass of CoP, $Co(PO_3)_2$, Ni₂P and (Ni(PO₃)₂. Because the ratio of Ni with Co is 1:5 based on ICP-MS measurement results,

(X/M(CoP)): (2Y/M(Ni₂P))=5:1

Therefore, the value of X and Y is 0.3953 and 0.0653, respectively. Consequently, the relative content of phosphide is 46.06 %.

Fig. S7 (a) SEM and (b) TEM image of CoP@NCP.

Fig. S8 XPS high-resolution spectra of CoP@NCP: (a) Co 2p, (b) P 2p and (c) N 1s.

Fig. S9 Raman spectra of CoP/Ni₂P@HPNCP and CoP@NCP.

Fig. S10 CV curves of (a)CoP/Ni₂P@HPNCP, (b) CoP@NCP, (c) Co/Ni@HPNCP and (d) Co@NCP in the non-faradaic capacitance from 0.10 V to 0.20 V vs. RHE at scan rate of 20, 30, 40, 50, 60, 70 and 80 mV s⁻¹ in 1.0 M KOH, (f) calculated C_{dl} for CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP.

Fig. S11 (a) Specific activity and (b) TOF of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP in 1.0 KOH.

The specific activity was calculated by normalizing the C_{dl} to a standard specific capacitance (40 μ F cm⁻²).¹Turnover frequency (TOF) can be obtained from the equation: TOF = (J × A)/ (z × F ×n), Where J is the current density at specific overpotential (mA cm⁻²), A presents geometric area of the samples (cm⁻²), F is faraday constant (96485 C mol⁻¹) and n represents the total moles number of all active metal sites, Z is the electron number transferred to product one molecule gas. For HER, N is 2, for OER, N is 4.²⁻³

Fig. S12 EIS of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP measured in 1.0 KOH.

Fig. S13 The equivalent circuit model of EIS analysis of all samples.

The equivalent circuit constitutes by a parallel combination of (R_{ct}, CPE_1) and (R_2, CPE_2) element in series with R_s . The CPE is regarded as the double layer capacitor from the catalyst/support and catalyst solution. R_s , R_{ct} and R_1 is uncompensated solution resistance, charge transfer resistance and the contact resistance between the catalyst material and the others resistance, respectively.

Fig. S14 CV curves of (a)CoP/Ni₂P@HPNCP, (b) CoP@NCP, (c) Co/Ni@HPNCP and (d) Co@NCP in the non-faradaic capacitance from 0.10 V to 0.20 V vs. RHE at scan rate of 20, 30, 40, 50, 60, 70 and 80 mV s⁻¹ in 0.5 M H₂SO₄, (f) calculated C_{dl} for CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP.

Fig. S15 (a) Specific activity and (b) TOF of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP in 0.5 H₂SO₄.

Fig. S16 CV curves of (a)CoP/Ni₂P@HPNCP, (b) CoP@NCP, (c) Co/Ni@HPNCP and (d) Co@NCP in the non-faradaic capacitance from 0.10 V to 0.20 V vs. RHE at scan rate of 20, 30, 40, 50, 60, 70 and 80 mV s⁻¹ in 1.0 M PBS, (f) calculated C_{dl} for CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP.

Fig. S17 (a) Specific activity and (b) TOF of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP in 1.0 M PBS.

Fig. S18 EIS of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP measured in (a) $0.5 H_2SO_4$ and (b) 1.0 M PBS.

Fig. S19 (a) SEM image, (b) TEM image, (c) HAADF-STEM image and corresponding EDS elemental mapping of CoP/Ni₂P@HPNCP after long-term test in 1.0 M KOH.

Fig. S20 (a) SEM image, (b) TEM image, (c) HAADF-STEM image and corresponding EDS elemental mapping of CoP/Ni₂P@HPNCP after long-term test in $0.5 \text{ M H}_2\text{SO}_4$.

Fig. S21 (a) SEM image, (b) TEM image, (c) HAADF-STEM and corresponding EDS elemental mapping of CoP/Ni₂P@HPNCP after long-term test in 1.0 M PBS.

Fig. S22 XPS high-resolution spectrua of CoP/Ni₂P@HPNCP after long-term HER test (a) Co 2p, (b) Ni 2P, (c) P 2p and (d) N 1s.

Fig. S23 CV curves of (a)CoP/Ni₂P@HPNCP, (b) CoP@NCP, (c) Co/Ni@HPNCP and (d) Co@NCP in the non-faradaic capacitance from 0.95 V to 1.05 V vs. RHE at scan rate of 20, 30, 40, 50, 60, 70 and 80 mV s⁻¹ in 1.0 M KOH, (f) calculated C_{dl} for CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP.

Fig. S24 (a) Specific activity and (b) TOF of CoP/Ni₂P@HPNCP, CoP@NCP, Co/Ni@HPNCP and Co@NCP in 1.0 M KOH.

Fig. S25 (a) SEM image, (b) TEM image, (c) HRTEM, (d) HAADF-STEM and corresponding EDS elemental mapping of $CoP/Ni_2P@HPNCP$ after OER test.

Fig. S26 XPS high-resolution spectra of CoP/Ni₂P@HPNCP after OER test: (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) O 1s.

Fig. S27 (a) HER and (b) OER LSV curves of CoP/Ni₂P@HPNCP deposited on Ni foam and glass carbon electrode surface.

Fig. S28 (a)The digital photo of H_2 and O_2 volume at different test time, (b) Volume of H_2 and O_2 as a function time at 0.025 A.

The theoretical volume of H_2 or O_2 during overall water splitting can be calculated by following equation

$$V = \frac{i \times t \times 22.4}{n \times F}$$

where, V is volume of H_2 or O_2 (L), n is the electron number transferred to product one molecule gas, F presents the faraday constant (96485 C mol⁻¹). i is applied current (A), t represents test time (s). In our experiment, i is 0.025 A.

Table S1 Comparison of HER, OER and overall water splitting of $CoP/Ni_2P@HPNCP$ with other reported phosphide-based bifunctional electrocatalystsin 1.0 M KOH.

Catalysts	Overpotential at 10 mA cm ⁻² (mV)		Tafel slope (mV dec ⁻¹)		Electrolytic cell voltage	Reference	
	HER	OER	HER	OER	cm^{-2} (V)		
CoP/Ni2P@HPNCP	106	294	65.9	65.5	1.59	This work	
CoP/NCNHP	115	310	66	70	1.64	4	
CoxP/N-doped C	187	380	58.5	68.1	1.71	5	
CoP/EEBP	118	315	79	75	1.666	6	
Co ₂ P/CoNPC	208	326	72.6	83.9	1.64	7	
Ni ₂ P/NF	116	290 (50)	68	75	1.63	8	
NiCoFeP/C	149	270	89	65	1.60	9	
FeP ₂ -NiP ₂ @PC	179	248	65	54	1.70	10	
NiCoP@Cu ₃ P	54	309	72	42	-	11	
FeNi-LDH/CoP/CC	138.6 (20)	231 (20)	56.1	33.5	1.617	12	
FeCo/Co ₂ P@NPCF	260	330	120	61	-	13	
CoP/Ni ₂ P	200	300	103	60	1.60	14	
Fe _{0.29} Co _{0.71} P/NF	74	251 (50)	53.6	37.8	1.59	15	

Samples	R _S /Ω	$CPE_1 / S s^{-n}$	n ₁ / 0 <n<1< th=""><th>R₁ / Ω</th><th>$\frac{CPE_2}{/S s^{-n}}$</th><th>n₂/ 0<n<1< th=""><th>R_{ct} /Ω</th></n<1<></th></n<1<>	R ₁ / Ω	$\frac{CPE_2}{/S s^{-n}}$	n ₂ / 0 <n<1< th=""><th>R_{ct} /Ω</th></n<1<>	R _{ct} /Ω
CoP/Ni ₂ P@HPNCP	8.196	3.759 E-002	0.80	1.886	3.416 E-004	0.87	45.54
CoP@NCP	8.226	1.801 E-002	0.38	0.598	7.563 E-004	0.88	64.81
Co/Ni@HPNCP	7.739	9.394 E-004	0.39	0.465	1.465 E-002	0.44	710.5
Co@NCP	8.230	1.003 E-003	0.82	0.592	2.670 E-003	0.65	849.0

Table S2 EIS fitting parameters from equivalent circuits of all samples during HERprocess in 1.0 M KOH.

Table S3 Comparison of HER of $CoP/Ni_2P@HPNCP$ with other reportedphosphide-based bifunctional electrocatalysts in 0.5 M H₂SO₄.

Catalysts	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
CoP/Ni2P@HPNCP	130	63.38	This work
CoP/NCNHP	140	53	4
CoP-InNC@CNT	153	62	16
Ni–Cu–P films	150	69	17
Co ₄ Ni ₁ P NTs	131	54	18
Ni-CoP/HPFs	144	52	19
CoP/Ni ₂ P	174	78	14
CoP NPs	135	65	20

Catalysts	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
CoP/Ni ₂ P@HPNCP	141	87.2	This work
CoP-400	161	81	21
V, N-CoP	146	88	22
Ni ₂ P@NPCNFs/CC	185.3	230.3	23
NiCoP/rGO	142	91	24
Ni-Co-P-H (0.5M PBS)	157	84	25
Co _{0.6} Fe _{0.4} P-1.125	140	75	26

Table S4 Comparison of HER of CoP/Ni₂P@HPNCP with other reported phosphide-based bifunctional electrocatalysts in 1.0 M PBS.

Table S5 EIS fitting parameters from equivalent circuits of all samples during HERprocess in $0.5 \text{ M H}_2\text{SO}_{4.}$

Samples	R _S /Ω	$CPE_1 / S s^{-n}$	n ₁ / 0 <n<1< th=""><th>R₁ / Ω</th><th>CPE₂ / S s⁻ⁿ</th><th>n₂/ 0<n<1< th=""><th>R_{ct} /Ω</th></n<1<></th></n<1<>	R ₁ / Ω	CPE ₂ / S s ⁻ⁿ	n ₂ / 0 <n<1< th=""><th>R_{ct} /Ω</th></n<1<>	R _{ct} /Ω
CoP/Ni ₂ P@HPNCP	8.399	4.473 E-004	0.89	0.339	2.326 E-003	0.57	51.0
CoP@NCP	8.745	9.112 E-005	0.80	0.337	7.359 E-004	0.60	213.5
Co/Ni@HPNCP	7.816	2.645 E-004	0.82	8.28	8.634 E-004	0.59	9.464 E+003
Co@NCP	8.062	4.635 E-004	0.90	5.45	1.180 E-003	0.69	1.478 E+004

Samples	R _S /Ω	CPE ₁ / S s ⁻ⁿ	n ₁ / 0 <n<1< th=""><th>R₁ / Ω</th><th>CPE₂ / S s⁻ⁿ</th><th>n₂/ 0<n<1< th=""><th>R_{ct} /Ω</th></n<1<></th></n<1<>	R ₁ / Ω	CPE ₂ / S s ⁻ⁿ	n ₂ / 0 <n<1< th=""><th>R_{ct} /Ω</th></n<1<>	R _{ct} /Ω
CoP/Ni ₂ P@HPNCP	13.08	3.952 E-005	0.54	23.02	3.420 E-003	0.54	49.52
CoP@NCP	12.99	3.670 E-003	0.59	24.56	7.666 E-004	0.46	60.99
Co/Ni@HPNCP	15.25	3.566 E-003	0.87	53.59	1.174 E-003	0.55	3.876 E+003
Co@NCP	14.94	6.024 E-004	0.86	69.12	5.093 E-003	0.52	8.879 E+003

Table S6 EIS fitting parameters from equivalent circuits of all samples during HER

 process in 1.0 M PBS.

Table S7 EIS fitting parameters from equivalent circuits of all samples during OERprocess in 1.0 M KOH.

Samples	R _S /Ω	Q ₁ / S s ⁻ⁿ	n ₁ / 0 <n<1< th=""><th>R₁ / Ω</th><th>Q₂ / S s⁻ⁿ</th><th>n₂/ 0<n<1< th=""><th>R_{ct} /Ω</th></n<1<></th></n<1<>	R ₁ / Ω	Q ₂ / S s ⁻ⁿ	n ₂ / 0 <n<1< th=""><th>R_{ct} /Ω</th></n<1<>	R _{ct} /Ω
CoP/Ni ₂ P@HPNCP	8.532	1.425 E-002	0.79	18.47	8.164 E-004	0.54	76.07
CoP@NCP	9.785	9.159 E-004	0.56	13.05	9.174 E-003	0.79	107.5
Co/Ni@HPNCP	9.453	4.317 E-003	0.46	31.5	2.328 E-003	0.82	593.0
Co@NCP	9.464	9.938 E-005	0.77	83.31	9.728 E-003	0.59	918.1

References

- L. Zhang, X. Ren, X. Guo, Z. Liu, A. M. Asiri, B. Li, L. Chen and X. Sun, *Inorg. Chem.*, 2018, 57, 548-552.
- G. Li, J. Yu, W. Yu, L. Yang, X. Zhang, X. Liu, H. Liu and W. Zhou, *Small*, 2020, 16, e2001980.
- 3. G. Zhao, K. Rui, S. X. Dou and W. Sun, Adv. Funct. Mater., 2018, 28, 1803291.
- 4. Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang,

Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen and Y. D. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610-2618.

- J. S. Li, L. X. Kong, Z. X. Wu, S. Zhang, X. Y. Yang, J. Q. Sha and G. D. Liu, *Carbon*, 2019, 145, 694-700.
- T. T. Liang, Y. D. Liu, P. F. Zhang, C. T. Liu, F. Ma, Q. Y. Yan and Z. F. Dai, Chem. Eng. J., 2020, 395, 10.
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang and Q. Xu, *Adv. Mater.*, 2020, **32**, 2003649.
- Y. T. Wu, H. Wang, S. Ji, B. G. Pollet, X. Y. Wang and R. F. Wang, *Nano Research*, 2020, 13, 2098-2105.
- X. J. Wei, Y. H. Zhang, H. C. He, L. Peng, S. H. Xiao, S. R. Yao and P. Xiao, *Chem. Commun.*, 2019, 55, 10896-10899.
- P. X. Ji, H. H. Jin, H. L. Xia, X. Luo, J. K. Zhu, Z. H. Pu and S. C. Mu, ACS Appl. Mater. Interfaces, 2020, 12, 727-733.
- X. X. Ma, Y. Q. Chang, Z. Zhang and J. L. Tang, J. Mater. Chem. A, 2018, 6, 2100-2106.
- 12. K. He, T. T. Tsega, X. Liu, J. Zai, X.-H. Li, X. Liu, W. Li, N. Ali and X. Qian, *Angew. Chem. Int. Ed.*, 2019, **58**, 11903-11909.
- Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Y. Yang, L. Qin and X. S. Fang, *Adv. Energy Mater.*, 2020, **10**, 11.
- J. Zhang, S. Wei, Y. Liu, G. Wang, Y. Cui, A. Dong, S. Xu, J. Lian and Q. Jiang, J. Mater. Chem. A, 2019, 7, 26177-26186.
- H. P. Feng, L. Tang, G. M. Zeng, J. F. Yu, Y. C. Deng, Y. Y. Zhou, J. J. Wang, C. Y. Feng, T. Luo and B. B. Shao, *Nano Energy*, 2020, 67, 11.
- L. L. Chai, Z. Y. Hu, X. Wang, Y. W. Xu, L. J. Zhang, T. T. Li, Y. Hu, J. J. Qian and S. M. Huang, *Adv. Sci.*, 2020, 7, 10.
- M. Cao, Z. Xue, J. Niu, J. Qin, M. Sawangphruk, X. Zhang and R. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 35224-35233.
- L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang and X. Zhao, *Adv. Funct. Mater.*, 2017, 27, 1703455.

- Y. Pan, K. A. Sun, Y. Lin, X. Cao, Y. S. Cheng, S. J. Liu, L. Y. Zeng, W. C. Cheong, D. Zhao, K. L. Wu, Z. Liu, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen and Y. D. Li, *Nano Energy*, 2019, 56, 411-419.
- Y. Liu, Y. Zhu, J. Shen, J. Huang, X. Yang and C. Li, *Nanoscale*, 2018, 10, 2603-2612.
- H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She and D. Yang, Small, 2018, 14.
- W. Zhang, Y. Sun, Q. Liu, J. Guo and X. Zhang, J. Alloys Comp., 2019, 791, 1070-1078.
- M.-Q. Wang, C. Ye, H. Liu, M. Xu and S.-J. Bao, Angew. Chem. Int. Ed., 2018, 57, 1963-1967.
- J. Li, M. Yan, X. Zhou, Z.-Q. Huang, Z. Xia, C.-R. Chang, Y. Ma and Y. Qu, *Adv. Funct. Mater.*, 2016, 26, 6785-6796.
- 25. X. Liu, S. Deng, D. Xiao, M. Gong, J. Liang, T. Zhao, T. Shen and D. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 42233-42242.
- Y. B. Lian, H. Sun, X. B. Wang, P. W. Qi, Q. Q. Mu, Y. J. Chen, J. Ye, X. H. Zhao, Z. Deng and Y. Peng, *Chem. Sci.*, 2019, **10**, 464-474.