Supporting information for

Electrospun Hetero-CoP/FeP Embedded in Porous Carbon Nanofibers: Enhanced Na⁺ Kinetics and Specific Capacity

Liang Han^a, Mutian Zhang^a, Huanlei Wang^{a,*}, Ping Li^a, Wenrui Wei^a, Jing Shi^a, Minghua Huang^a, Zhicheng Shi^a, Wei Liu^a and Shougang Chen^{a,*}

^a School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.

E-mail: <u>huanleiwang@gmail.com</u> (H. Wang); <u>sgchen@ouc.edu.cn</u> (S. Chen)

Fig. S1 (a) SEM and (b, c) TEM images of FeP@PCNFs. (d) SEM and (e, f) TEM images of CoP@PCNFs.

Fig. S2 Fitted Raman spectra of (a) CoP/FeP@PCNFs, (b) FeP@PCNFs, and (c) CoP@PCNFs electrodes.

Fig. S3 TG curve of the CoP/FeP@PCNFs.

Fig. S4 BJH pore size distribution of CoP/FeP@PCNFs, CoP@PCNFs and FeP@PCNFs.

Fig. S5 High-resolution C1s XPS spectra of (a) CoP@PCNFs and (b) FeP@PCNFs. High-resolution N1s XPS spectra of (c) CoP@PCNFs and (d) FeP@PCNFs.

Sample		Relative peak areas (%)			
	N-Q	N-X	N-5	N-6	
CoP/FeP@PCNFs	15.3	7.5	40.2	37.0	
CoP@PCNFs	15.6	7.6	39.5	37.3	
FeP@PCNFs	15.0	8.0	40.6	36.4	

Table S1 Relative surface concentrations of nitrogen species in the three samples.

Fig. S6 CV curves of the (a) CoP@PCNFs and (b) FeP@PCNFs electrodes at 0.1 mV s⁻¹.

Fig. S7 The typical galvanostatic discharge/charge curves of the (a)CoP@PCNFs and (b) FeP@PCNFs electrode at the current density of 0.05 A g^{-1} .

 Table S2. Comparison of sodium storage performance for the CoP/FeP@PCNFs with other

 metal phosphide-based electrodes.

Matoriala	Flactrolyto	Rate consoity	Cycling stability	Ref
		244.1 mAb and at	144 m A h and a ftar	1
COP3@C	I WI NaCIO ₄ III EC/DEC \pm 59/EE	$0.05 \text{ A} \text{ cm}^{-1}$	144 mAll g^2 alter	1
	C	0.03 A g^{-1}	200 cycles at	
	C	$150.4 \text{ IIIAII g}^{-1}$	0.5A g	
	1M NoClO in	2.5 Ag^{-1}	225 mAb a-l after	2
$C_{02} W^{-}$	FC/DEC	525 mAng at $0.05 \text{ A} \text{ g}^{-1}$	100 evolos et 0.05	2
Callo	EC/DEC	$200 \text{ mAh } \text{g}^{-1}$ at	$\Lambda \sigma^{-1}$	
		$0.5 \text{ A} \text{ g}^{-1}$	Ag	
CoP	1M NaClO, in	0.5 A g	315 mAb a ⁻¹ after	3
COI	PC+5% FEC		25 cycles at 0.1 A	5
	1 C+3701 EC	0.1 A g	25 Cycles at 0.1 A	
		$2 \Lambda \sigma^{-1}$	B	
MoP	1M NaClO ₄ in	2 Λ g 387 mAh σ ⁻¹ at	104 5 mAh σ ⁻¹	4
IVIOI	PC+5% FFC	$0.1 \text{ A} \text{ g}^{-1}$	after 10000 cycles	т
		$115 \text{ mAh } \sigma^{-1} \text{ at}$	at 1.6 A σ^{-1}	
		$16 \text{ A } \text{g}^{-1}$	ut 1.0 11 g	
CNT@FeP-	1M NaClO4 in	$391 \text{ mAh } \sigma^{-1} \text{ at}$	295 mAh σ ⁻¹ after	5
C	EC/PC	0.2 g^{-1}	500 cycles at 0.5	5
C		$258 \text{ mAh } \text{g}^{-1} \text{ at}$	Α σ ⁻¹	
		5 A g^{-1}		
FeP/graphite	1M NaClO₄ in	$280 \text{ mAh g}^{-1} \text{ at}$	175 mAh g ⁻¹ after	6
, 8F	EC/DEC	0.05A g ⁻¹	70 cycles at 0.05	-
		56 mAh g ⁻¹ at	A g ⁻¹	
		2.5 A g ⁻¹	e	
FeP	1M NaClO ₄ in	420 mAh g^{-1} at	321 mAh g ⁻¹ after	7
	PC+5%FEC	0.05A g ⁻¹	60 cycles at 0.05	
		$60 \text{ mAh g}^{-1} \text{ at } 0.5$	A g ⁻¹	
		A g ⁻¹	-	
CoP@C-	1.0 M NaClO ₄ in	543 mAh g ⁻¹ at	470 mAh g ⁻¹ after	8
RGO-NF	PC =100 vol%	0.2A g ⁻¹	100 cycles at 0.1	
	with 5.0% FEC	155 mAh g ⁻¹ at	A g ⁻¹	
		1.6 A g ⁻¹		
Cu ₃ P	1M NaClO ₄ in	362 mAh g ⁻¹ at	349 mAh g ⁻¹ after	9
nanowire	EC/DEC+5%FE	0.1A g ⁻¹	260 cycles at 1 A	
(CPNW)	С	137 mAh g ⁻¹ at	g ⁻¹	
		5 A g ⁻¹		
MoP@C	1.0 M	358 mAh g ⁻¹ at	180 mAh g ⁻¹ after	10
	NaCF ₃ SO ₃ in	0.05A g ⁻¹	250 cycles at 0.5	
	DEGDME	173 mAh g ⁻¹ at	A g ⁻¹	

		1 A g ⁻¹		
NCP@FCNT	1 M NaClO ₄ in	401 mAh g ⁻¹ at	188.9 mAh g ⁻¹	11
-FS	PC + 5 wt%	0.4A g ⁻¹	after 100 cycles at	
	FEC	276 mAh g ⁻¹ at	0.4 A g ⁻¹	
		3.2 A g ⁻¹		
RGO@CoP	1 M NaClO ₄ in	480 mAh g ⁻¹ at	456.2 mAh g ⁻¹	12
@FeP	PC +5 wt%	0.1A g ⁻¹	after 200 cycles at	
	FEC	374 mAh g ⁻¹ at	0.1 A g ⁻¹	
		1A g ⁻¹	_	
NiCoP-NC	1.0 M NaClO ₄	406.2 mAh g ⁻¹ at	334.8 mAh g ⁻¹	13
	in EC/DEC	0.1A g ⁻¹	after 200 cycles at	
		202.1 mAh g ⁻¹ at	0.1 A g ⁻¹	
		3A g ⁻¹		
Ti ₃ C ₂ /NiCoP	1 M NaClO ₄ in	416.9 mAh g ⁻¹ at	261.7 mAh g ⁻¹	14
	EC:DMC:EMC	0.1A g ⁻¹	after 2000 cycles	
	+ 5 wt% FEC	240 mAh g ⁻¹ at	at 1 A g ⁻¹	
		2A g ⁻¹		
This work	1M NaSO ₃ CF ₃	459 mAh g ⁻¹ at	208 mAh g ⁻¹ after	
	in DGM	0.05A g ⁻¹	1000 cycles at 5	
		213 mAh g ⁻¹ at	A g ⁻¹	
		10 A g ⁻¹		

Fig. S8 (a,b) SEM and (c,d) TEM images of CoP/FeP@PCNFs after 1000 cycles.

Fig. S9 EIS spectra of CoP/FeP@PCNFs, CoP@PCNFs and FeP@PCNFs electrodes before cycling.

Fig.S10 Schematic for the calculation method employed. The analysis was based on an applied current of 22 mA g^{-1} for 0.5 h, followed by a 3 h relaxation.

GITT tests were performed to characterize sodium-ion diffusion coefficient (D_{Na}) in the synthesized samples. The GITT data of CoP/FeP@PCNFs, CoP@CNFs and FeP@PCNFs were recorded at a constant current density of 22 mA g⁻¹ for an interval of 30 min followed by 180 min relaxation in the first cycle. D_{Na} value of CoP/FeP@PCNFs electrodes is based on the following Equation:

$$D_{_{Na^{+}}} = \frac{4}{\pi\tau} \left(\frac{m_{B}V_{m}}{M_{b}S}\right)^{2} \left(\frac{\Delta E_{s}}{\Delta E_{\tau}}\right)^{2}$$

where τ denotes the constant current pulse time, m_B , V_m , and M_b are the mass, molar volume, molar mass of the material, S is the area of electrode-electrolyte interface. ΔE_s refers to voltage change during a single-step experiment, and ΔE_{τ} is the total change of cell voltage during a constant current pulse.

Fig. S11 CV curves of (a) CoP@PCNFs and (b) FeP@PCNFs electrode at different scan rates. Cathodic and anodic b values of (c) CoP@PCNFs, (d) FeP@PCNFs.

The CASTEP software package requires that the calculation system must be periodic, and the calculation requires that the structure should have a large enough vacuum layer to accurately determine the energy level at the vacuum and eliminate the influence of interlayer interaction¹⁵. Therefore, a vacuum layer is added to make the total length of Z direction 25 Å to establish periodic cells. BFGS optimization algorithm was used for geometric optimization. The heterogenous crystal lattice distortion was less than 5% and 2.28%, which is far less than the general requirements for the construction of heterogeneous lattice distortion. The interval between the layers is 3.019 Å, which is close to that of the general two-dimensional van der Waals heterogeneous junction. Therefore, it can be considered that the model constructed by us is reasonable.

Fig. S12 Electrostatic potential drop diagram of (a) FeP homogeneous junction and (b)CoP homogeneous junction.

Fig. S13 Side view of an interlayer differential charge density diagram for a CoP/FeP heterostructure.

Table. S3 Mean Mulliken charge density of Fe, Co, P atoms in CoP/FeP heterostructure, FeP

System/atom	Fe	Со	Р	
FeP	0.115	/	-0.115	
СоР	/	0.221	-0.221	
FeP/CoP	0.143	0.266	-0.125	

homogeneous junction and CoP homogeneous junction.

Notes and references

- W. Zhao, X. Ma, G. Wang, X. Long, Y. Li, W. Zhang and P. Zhang, *Appl. Surf. Sci.*, 2018, 445, 167-174.
- R. Jin, X. Li, Y. Sun, H. Shan, L. Fan, D. Li and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 14641-14648.
- 3. W.-J. Li, Q.-R. Yang, S.-L. Chou, J.-Z. Wang and H.-K. Liu, *J. Power Sources*, 2015, **294**, 627-632.
- Z. Huang, H. Hou, C. Wang, S. Li, Y. Zhang and X. Ji, *Chem. Mater.*, 2017, 29, 7313-7322.
- 5. F. Han, C. Y. J. Tan and Z. Gao, *Chem. Electro. Chem.*, 2016, **3**, 1054-1062.
- Q.-R. Yang, W.-J. Li, S.-L. Chou, J.-Z. Wang and H.-K. Liu, *RSC Adv.*, 2015, 5, 80536-80541.
- W. J. Li, S. L. Chou, J. Z. Wang, H. K. Liu and S. X. Dou, *Chem. Commun.*, 2015, **51**, 3682-3685.
- 8. X. Ge, Z. Li and L. Yin, *Nano Energy*, 2017, **32**, 117-124.
- M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu and C. Yan, *Adv. Funct. Mater.*, 2016, 26, 5019-5027.
- Y. Cao, B. Zhang, X. Ou, Y. Li, C. Wang, L. Cao, C. Peng and J. Zhang, *New J. Chem.*, 2019, 43, 7386-7392.
- X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B.
 Luo, H.-K. Liu and S.-X. Dou, *Adv. Funct. Mater.*, 2018, 28, 1801016.
- 12. Z. Li, L. Zhang, X. Ge, C. Li, S. Dong, C. Wang and L. Yin, *Nano Energy*, 2017, **32**, 494-502.
- 13. J. Li, L. Shi, J. Gao and G. Zhang, Chem.-Euro. J., 2018, 24, 1253-1258.
- D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang, C. Wang and L. Yin, *Energy Environ. Sci.*, 2019, **12**, 2422-2432.
- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Krist.-Cryst. Mater., 2005, 220, 567-570.