Supporting Information

A First Principles Exploration on the Versatile Configurations at Alkynyl-protected Coinage Metal(111) Interface

Fang Sun and Qing Tang*

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China

*To whom correspondence should be addressed. E-mail: <u>qingtang@cqu.edu.cn</u>.

Table S1. Binding energies (BE: eV) and the optimized structures (only the topmost surface layer is shown) of methylethynyl (CH₃-C \equiv C-) at different adsorption sites on Au (111) with 4 layers of slab in a 4 × 4 lateral cell. The initial angle between the 111 plane and linear methylethynyl is 90°.

Sites	The optimized structures	BE (eV)
top		-3.06
bridge		-3.34
hcp		-3.40
fcc		<u>-3.45</u>

Table S2. Binding energies (BE: eV) and the optimized structures (only the topmost surface layer is shown) of methylethynyl (CH₃-C \equiv C-) at different adsorption sites on Ag (111) with 4 layers of slab in a 4 × 4 lateral cell. The initial angle between the 111 plane and linear methylethynyl is 90°.

Sites	The optimized structures	BE (eV)
top	Relaxed to hcp	/
bridge	Relaxed to fcc	/
hcp		-3.54
fcc		<u>-3.55</u>

Table S3. Binding energies (BE: eV) and the optimized structures (only the topmost surface layer is shown) of methylethynyl (CH₃-C \equiv C-) at different adsorption sites on Cu (111) with 4 layers of slab in a 4 × 4 lateral cell. The initial angle between the 111 plane and linear methylethynyl is 90°.

Sites	The optimized structures	BE (eV)
top	Relaxed to hcp	/
bridge	Relaxed to fcc	/
hcp		-4.23
fcc	***	<u>-4.24</u>

Table S4. The orientation, the optimized geometry structures and binding energies (per ligand) for $CH_3C\equiv C-Au_{adatom}-C\equiv CCH_3$ staple motif at the bridge sites on Au(111). Only the topmost surface layer is shown. Color legend: Au_{adatom}, red; other Au, yellow; C, grey; H, white.

Table S5. The orientation, the optimized geometry structures and binding energies (per ligand) for $CH_3C\equiv C-Ag_{adatom}-C\equiv CCH_3$ staple motif at the bridge sites on Ag(111). Only the topmost surface layer is shown. Color legend: Ag_{adatom} , purple; other Ag, baby blue; C, grey; H, white.

Table S6. The orientation, the optimized geometry structures and binding energies (per ligand) for $CH_3C\equiv C-Cu_{adatom}-C\equiv CCH_3$ staple motif at the bridge sites on Cu(111). Only the topmost surface layer is shown. Color legend: Cu_{adatom} , green; other Cu, brick-red; C, grey; H, white.

Figure S1. Schematic presentation of adsorption sites of high-symmetry on a triangular face of the Au₅₅ nanocluster.

Figure S2. The binding energies and optimized structures of $CH_3C=C$ covalently bonded to icosahedral Au₅₅ cluster. Color legend: Au_{adatom}, red; other Au, yellow; C, grey; H, white.

Figure S3. The binding energies and optimized structures of $CH_3C=C$ covalently bonded to icosahedral Ag_{55} cluster. Color legend: Ag_{adatom} , purple; other Ag, baby blue; C, grey; H, white.

Figure S4. The binding energies and optimized structures of $CH_3C \equiv C$ covalently bonded to icosahedral Cu_{55} cluster. Color legend: Cu_{adatom} , green; other Cu, brick-red; C, grey; H, white.

Table S7. Comparison of binding energies per $CH_3C\equiv C$ - for the most stable mode of the bridge and staple motifs on the three coinage metal(111) surfaces with and without including the D3 approximation.

Category The most stable Mode		PBE-D3 level	PBE (without vdW correction)
Au(111)	Bridge motif	-3.54 eV	-3.17 eV
	Staple motif	-3.58 eV	-2.87 eV
Ag(111)	Bridge motif	-3.55 eV	-3.29 eV
	Staple motif	-3.48 eV	-2.90 eV
Cu(111)	Bridge motif	-4.26 eV	-3.86 eV

Figure S5. The optimized structures (only the topmost surface layer is shown) of methylthiolate (CH₃S-) for the bridging and staple motifs on (a-b) Au(111), (c-d) Ag(111), and (e-f) Cu(111) with 4 layers of slab in a 4×4 lateral cell. The initial angle between the surface normal and S-C bond is 30°. S atom is highlighted in blue.