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I. RATE EQUATIONS

Magnetic nanoparticles (NPs) with predominant uniaxial anisotropy can be described

as double-well systems (DWS). The model is exploited to draw and analyze the hysteresis

loops of particles submitted to cyclic magnetization. Here, the main assumptions leading to

the rate equations are given.

Each magnetic nanoparticle has size D, effective volume V = (π/6)D3 and magnetic mo-

ment µ = MsV where Ms is the saturation magnetization of the material; in the absence of

magnetic field, the magnetic moment is aligned by to the easy axis by uniaxial anisotropy of

amplitude Keff The easy directions of NPs are assumed to be evenly distributed in space;

in Figure 1 the plane containing the rotation of the µ vector is defined by the applied field

H and the easy axis of a nanoparticle.

Let Nφ be the number (per unit volume) of particles of magnetic moment µ whose easy

axis forms an angle φ with respect to H. For easy-axis directions evenly distributed in

space, Nφ = N/2π, N being the total number (per unit volume) of particles in the system.

For each angle φ the occupancy numbers in the two wells are N1φ and N2φ (N1φ+N2φ = Nφ).

The energy of a single DWS, E(θ, φ) is:

E(θ, φ) = K0(T )V sin2(θ) + αM2
s V (1− |m0|

2
)fV − 2HMs(T )V cos(θ − φ)

where θ is the angle between the magnetic moment direction and the easy axis. The
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FIG. 1. Top: energy of the DWS without and with applied field; bottom: reference system (easy

axis parallel to the x-axis).

dipole-dipole interaction term is included. The angles of minimum energy θ1(φ), θ2(φ) (see

Figure 1) are found by requiring that the derivative of E(θ, φ) with respect to θ be equal to

zero; the magnetization along the field direction at the temperature T is therefore:

M(T, φ) = N1φ(T )Ms(T )V cos(θ1(φ)− φ)

+N2φ(T )Ms(T )V cos(θ2(φ)− φ).

The redistribution of particles in the two wells is ruled by the rate equations:

dN1φ

dt
= − 1

τ1(t)
N1φ +

1

τ2(t)
N2φ =

Nφ

τ2(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
N1φ

(1)
dN2φ

dt
=

1

τ1(t)
N1φ −

1

τ2(t)
N2φ =

Nφ

τ1(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
N2φ.

In the standard Arrhenius picture the time-dependent escape frequencies are:

τ−1
i (t) = τ−1

0 exp
(
− EBi(t)

kBT

)
= τ−1

0 exp
(
− EM(t)− Ei(t)

kBT

)
(i = 1, 2)
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where EB 1,2(H,φ) are the total energy barriers for 1 → 2 transitions and viceversa, Ei(t)

(i =1,2) are the energies of the two energy minima, EM(t) is the energy at the top of the

barrier(see Figure 1). The total energy barriers are defined in Equation (4) of the main text.

The energies Ei,M depend on time when H = H(t). The problem’s symmetry dictates

the general relationship τ1(−H) = τ2(H) that holds at all angles φ.

In high-frequency measurements τmeas is conventionally taken as the reciprocal of mea-

surement frequency. In this case the sweep rate is no longer a constant; nevertheless, it is

still possible to introduce a r.m.s sweep rate RRMS defined as RRMS = (π/
√

2)Hvf where

Hv is the vertex field. The dimensionless rate equations (1) can be rewritten in terms of the

magnetic field H:

dN1,φ

dH
= ∓ 1

RRMS

[ Nφ

τ2(H)
−
( 1

τ1(H)
+

1

τ2(H)

)
N1,φ

]
(2)

dN2,φ

dH
= ∓ 1

RRMS

[ Nφ

τ1(H)
−
( 1

τ1(H)
+

1

τ2(H)

)
N2,φ

]
.

where the ∓ sign refers to the upper/lower loop branch.

The behavior of a DWS assembly with randomly distributed easy axes is obtained by

averaging the solutions of the full rate equations (2) over all φ angles.

In three dimensions, the average of a φ-dependent quantity g(φ) is the sum:∑N
1 g(φi)sin(φi)/

∑N
1 sin(φi) over N angles in the interval −π/2 ≤ φi ≤ π/2. In this work,

N has been fixed to 181; the relative difference between the average done with N = 181 and

with N = 1801 is negligible (< 2× 10−3).

The rate-equation approach is a simplifying approximation to the Fokker-Planck equation

for the double-well problem. For magnetic nanoparticles, rate equations naturally emerge

from the Fokker-Planck equation when the ratio KeffV/kBT is significantly larger than

unity; therefore the validity of the approach at a given temperature depends on both mag-

netic anisotropy and nanoparticle size.

In rate equations containing time-dependent escape frequencies, as the ones studied here,

detailed balancing is achieved only when ωτc << 1 where τc is the characteristic relax-

ation time of the system. In magnetic nanoparticles, the free diffusion time of magneti-
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zation is τc = MsV (1 + α2)/2γαkBT where γ is the electron gyromagnetic ratio and α is

the Gilbert’s damping constant appropriate to describe systems with intermediate-to-high

damping (α ≈ 1) such as magnetic nanoparticles. Using α = 0.5 one gets τc = 1.06 × 10−9

s for D = 15 nm. A similar figure is valid for all particle diameters considered in this work.

Therefore, the driving-field frequency should be much lower than ≈ 1× 108 Hz to guarantee

detailed balancing. In fact, the highest driving-field frequency used in the paper (f = 1×106

Hz) ensures that rate equations can be confidently applied for all studied nanoparticle sizes.

II. MAXIMUM LOOP AREA AND PARTICLE VOLUME

The behavior of the maximum loop area AMAX
L (i.e., the area of the loops calculated

when fV = f
(Max)
V ) with the volume of particles can be studied following the time evolution

of the magnetization M(t) driven by the applied field H(t), which is directly obtained by

the rate equations. An example is given in Figure 2, where the magnetization of 16-nm

particles (green line) is compared to the one of 13-nm particles (black line). As a matter of

fact, the two curves are observed to merely differ by a scale factor. This clearly results in a

corresponding difference in the loop’s area.

The proportionality between maximum loop area and V can be explained by means of

a simple analytical treatment valid when the magnetic field is sufficiently small. For any

angle φ between the magnetization and the easy axis, the condition for the maximum area is

τ = 1/f where τ = τ0 exp(EB/kBT ) is the typical relaxation time at zero magnetic field. In

the presence of a magnetic field, the relaxation times τi (i =1,2) entering the rate equations

(see previous Section) become:

τ1 = τe−αH(t) ' τ(1− αH(t))

(3)

τ2 = τeαH(t) ' τ(1 + αH(t))

where α = MsV
kBT

and the last equality holds when αHV << 1. In these conditions, the

rate equation for n1 = N1,φ/Nφ becomes (to the first order in αH):
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FIG. 2. Time evolution of the applied magnetic field (dashed blue line) and of magnetization during

one period T = 1
f , for two monodisperse systems with D = 13 and 16 nm (full black/green lines,

respectively). The dashed black line almost perfectly superimposed to the green line is obtained

multiplying the curve for D = 13 nm by a constant factor.

dn1

dt
=

1

τ2
−
( 1

τ1
+

1

τ2

)
n1 ' f(1− αH) + 2fn1. (4)

Rearranging terms, and taking H(t) = HV e
iωt:

dn1

dt
− 2fn1 = f(1− αHV e

iωt) (5)

which admits the general solution:

n1(t) = Ce−2ft +
1

2
− αHV

4

1

1 + πi
eiωt. (6)

The steady state solution after the initial transient is therefore:
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n1(t) =
1

2
− αHV

4

1

1 + πi
eiωt. (7)

Note that there is a phase shift between n1(t) and H(t), and the system’s response is

proportional to V through the α factor. A similar equation holds for n2:

n2(t) =
1

2
+
αHV

4

1

1 + πi
eiωt. (8)

so that the magnetization, which is a just linear combination of n1 and n2, turns out to

be indeed proportional to the particle volume V .

Although this explicit proof is valid when αHV <<1 only, the proportionality between

magnetization and V is maintained also for higher values of the vertex field (see Figure 2 of

the ESI and panel c of Figure 2 of the main text).

Finally, note that such a proportionality only holds at, or very close to fV = f
(Max)
V ,

because only there it is possible to set τ = 1/f and write the rate equation in the form of

equation 4.

FIG. 3. Behavior of the room-temperature Specific Loss Power of interacting magnetite nanoparti-

cles of different diameters as a function of the volume fraction fV for different vertex field values.
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III. SPECIFIC LOSS POWER AND PARTICLE VOLUME FRACTION

One of the most important consequences of the presence of dipole-dipole interactions

among magnetic nanoparticles is the fact that the Specific Loss Power (SLP) WSLP =

(f/ρNP )AL where f is frequency, ρNP is the mass density of magnetic material and AL is

the hysteresis loop’s area, cannot be considered as a sort of label associated to a given type

of magnetic nanoparticles but becomes a function of how many interacting particles are

contained in the host medium, i.e., a function of fV . This is shown in Figure 3, where the

SLP obtained at room temperature under a field of 100 kHz is reported for some typical

nanoparticle diameters and three values of the vertex field HV . In all cases, the SLP has a

maximum for a volume fraction whose value depends on both nanoparticle size and vertex

field. At high particle concentrations, the interaction becomes so strong that the SLP almost

disappears. The bell-shaped form of the WSLP (fV ) curves found for HV= 100 and 200 Oe is

slightly deformed when HV = 500 Oe, which is however a value exceeding the typical range

used in hyperthermia applications.

IV. FACTORS AFFECTING THE VARIATION OF Weff WITH TEMPERATURE

The specific loss power Weff is not only a function of fV at a given temperature, but

also of T for a given particle concentration. Two different factors concur to determine the

behavior of Weff as a function of temperature, a fact which has important consequences on

the heat effectively released by magnetic nanoparticles to a host material: first, the magnetic

properties are not constant, but they are monotonically decreasing functions of T , as briefly

discussed in the main text; second - and most important: the kinetics of redistribution

of the population of the two-level systems between the two wells is strongly influenced by

temperature.

The key point is that we are mainly interested in the temperature behavior of minor

hysteresis loops. Let us recall that in a minor loop the maximum magnetization (i.e., the

magnetization measured at the vertex field) is very far from technical saturation, whereas in

a major hysteresis loops the maximum magnetization is in the region of reversible approach

to saturation. For biomedical applications, the vertex field must be low in order to avoid

discomfort or nuisance to patients, so that one is compelled to make use of minor loops.
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FIG. 4. Graphical representation of the way the quantity Σ is determined

Minor symmetric hysteresis loops of monodisperse random NP systems exhibit a non-

monotonic temperature behavior of both shape and enclosed area AL. A sharp maximum

of AL appears between room temperature and the material’s Curie point, its position being

dependent on particle size D. The temperature where Weff is a maximum (TMAX) can be

predicted considering that the largest loop area occurs when the typical time of jump across

the barrier τ(T ) becomes equal to the time 1/(2f) taken to reverse the driving field:

τ(T ) = τ0e
EB
kBT =

1

2f
. (9)

As a consequence, TMAX is found solving the implicit equation:

TMAX =
EB(TMAX)

kBln( 1
2fτ0

)
(10)

where EB is a function of temperature because it contains temperature-dependent quan-
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tities such as K0 and Ms, and also depends on particle size because it is proportional to the

volume V .

When τ << 1/(2f) the two-level systems are very close to thermal equilibrium and the

hysteresis loop is very narrow; on the contrary, when τ >> 1/(2f) the redistribution of

magnetic moments in the energy wells is almost suppressed, and the magnetization only

rotates towards the field direction giving rise to a nearly anhysteretic curve. Only when

τ ≈ 1/(2f) does the redistribution most effectively keep the double-well systems out of

equilibrium during the loop, resulting in the largest enclosed area.

V. PROCEDURE TO DETERMINE THE QUANTITY Σ: A GRAPHICAL EX-

AMPLE

The parameter Σ defined in Equation 11 of main text is determined by selecting a large

number n of magnetic field values Hi in the range ±HV , as shown in Figure 4 (in this work,

n = 1000). For each i, the magnetization on the hysteresis loop is calculated in the case of

an assembly of interacting particles (black symbols in Figure 4) and in the non-interacting

case (red symbols). The square of the difference
(
M

(INT )
i −M (N.I.)

i

)
is summed for i = 1 to

n. The quantity Σ is obtained by taking the square root of the sum and by dividing it by

the saturation magnetization of magnetite NPs.
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