Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Effect of Surface Chemistry on Bio-conjugation and Bio-recognition Abilities of 2D Germanene Materials

Ang Wei Li^a, Jiri Sturala^b, Nikolas Antonatos^b, Zdeněk Sofer^b, Alessandra Bonanni^{a*}

^aDivision of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang

Technological University, Singapore 637371

^bDepartment of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28

Prague 6, Czech Republic

Email: a.bonanni@ntu.edu.sg

*Author for correspondence

Background line shape: Linear for Ge 2p, Shirley for C 1s.

	MATERIAL	Ge 2p _{3/2}		C 1s	
		Ge-C/H	Ge-Ox	Adv C	C-Ge
		1218.7	1220.9	285.2	283.2
	Ge-Me	4.1	2.0	3.2	3.5
POSITION FWHM (%)		(96.0%)	(4.0%)	(73.6%)	(26.4)
		1218.5	1221.2	284.9	
	Ge-H	4.1	1.5	3.4	-
		(94.6%)	(5.4%)	(100%)	

Peak line shape: Product of a Gaussian with a Lorentzian (GL(30)) as defined in Casa XPS software.

Table S1: Parameters for XPS fitting used in Figure 1 corresponding to Ge-Me and Ge-H.

Figure S1: X-ray Photoelectron Spectroscopy (XPS) spectra for survey scans with Ge-Me (A) and Ge-H (B).

Figure S2: Histogram plot illustrating the preliminary experiment involving (A) Ge-Me and (B) Ge-H before and after conjugation with OTA aptamer and OTA. Error bars correspond to triplicate measurements performed.

Figure S3: Photoluminescence (PL) spectra of Ge crystal, Ge-H and Ge-Me.

Figure S4: (A) Lifetime study performed with 1 mg/mL of Ge-Me (ranging from 0 mins to 336 hours). (B) Corresponding histogram plots displaying the change in fluorescence intensity over time.

Figure S5: Application of developed biosensing assay towards the use of red wine samples spiked with 10 μ M incubated with 1 mg/mL of Ge-Me with 150 nM OTA Aptamer, displayed in the form of Fluorescence emission spectra.

Table S2: Results of standard additions method to calculate the recoveries in the real sample matrix (red wine).

Sample	Average	Recovery	
OTA without Wine	298±4	02.40/	
OTA with Wine	323±3	92.4%	