Supporting Information

Perovskite and Quantum Dot Tandem Solar Cells with Interlayer Modification for Improved Optical Semitransparency and Stability

Aneta Andruszkiewicz¹, Xiaoliang Zhang², Malin B. Johansson¹, Lin Yuan¹, Erik M. J. Johansson^{1*}

¹Department of Chemistry-Ångström, Physical Chemistry, Uppsala University, 75120, Uppsala, Sweden

²School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Figure S1. UV-Vis-NIR absorbance spectrum of PbS CQDs #1 and #2 solutions, where λ_{max} was 901 and 935 nm respectively.

Figure S2. Picture of the $MAPbI_3$ semi-transparent solar cell with patterned design of Au electrode: (a) top view and (b) cross view. The size of presented solar cells is 2.4x1.4 cm.

Figure S3. (a) Transmittance spectrum of the perovskite solar cell with the following structure: FTO glass/compact $TiO_2/mesoporous TiO_2/MAPbI_3$ perovskite/Spiro-OMeTAD/10nm Au with different thicknesses of MoO_3 layer on top. (b) Pictures of the semi-transparent MAPbI_3 solar cells with 10 nm Au electrode and different thicknesses of MoO_3 on top of it: top and through views. The size of presented solar cells is 2.4x1.4 cm.

Figure S4. Current-voltage measurements of the semi-transparent MAPbI₃ solar cell with 10 nm Au electrode (blue line) and with 10 nm Au electrode followed by 20 nm MoO_3 interlayer (red line).

Figure S5. Current-voltage (JV) measurements statistics for semi-transparent MAPbI₃ solar cells with 10 nm Au electrode (blue) and PbS colloidal quantum dots solar cells of both $\lambda_{max}=901$ nm and $\lambda_{max}=935$ nm (red). For the semi-transparent MAPbI₃ statistics 26 samples were used and for PbS CQD solar cell 50 samples.

Figure S6. Transmittance measurements of the following samples: (blue) ITO/aluminum zinc oxide (AlZnO), (red) FTO/compact TiO₂ (c-TiO₂) /mesoporous TiO₂ (m-TiO₂), (green) ITO/AlZnO/ air 'layer' /FTO/ c-TiO₂/ m-TiO₂ and (purple) ITO/AlZnO/ surlyn interlayer /FTO/ c-TiO₂/ m-TiO₂

Figure S7. Current-voltage (JV) measurements statistics for filtered PbS CQDs solar cells with surlyn interlayer (red) or without it (blue). 12 samples of PbS CQDs with both λ_{max} equal 901 and 935 nm respectively were used for these statistics measurements.

Figure S 8. Current-voltage measurements of the champion filtered PbS CQDs solar cells with surlyn interlayer (red) or without it (blue).

Figure S9. Current-voltage measurement of the non-transparent MAPbI₃ solar cell with 80 nm Au electrode (orange line) and semi-transparent MAPbI₃ solar cell with 10 nm Au (blue line).