Supporting Information

Measuring the Order Parameter of Vertically Aligned Nanorods Assembly

Jeongmo Kim,^a Khalid Lahlil,^a Thierry Gacoin,^{*a} and Jongwook Kim^{*a}

^aLaboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Corresponding Author:

thierry.gacoin@polytechnique.edu / jong-wook.kim@polytechnique.edu

In-plane alignment of nanorods by electro-optical switching

Figure S1. (a) Illustration of preparation of lab-made in-plane switching (IPS) electro-optical cell and switching experiment **(b)** CCD captured image of lab-made IPS electro-optical cell. Inset: intensity profile of laser excitation area with a full-width-half-max (FWHM) of ~20 μ m.

Figure S1a shows the lab-made in-plane switching (IPS) cell. The cell has a gap of ~ 150 µm between Au electrodes on the glass substrate. Around 20 µL of NaYF₄:Eu colloidal nanorods dispersed in ethylene glycol (EG) is deposited between electrodes and covered by a glass cover slip with the spacer of thickness of around 60 µm. **Figure S1b** shows the CCD-captured image of lab-made IPS cell. The bright circle in the middle of electrodes is the position where the NaYF₄:Eu nanorods are excited by UV-laser (λ ~394 nm). As the E-field \vec{n} of IPS cell is transverse only at the middle of electrodes, it is important to collect PL signals at the middle of two electrodes from the smallest region. **Figure S1b-inset** shows the measured intensity profile of the excited area, showing around 20 µm of full-width-half-max (FWHM).

Figure S2. (a) Schematic illustration of IPS electro-optical (E/O) cell with aligning nanorods as increasing E-field. Red dashed line stands for the direction of E-field \vec{n} . At the middle of two electrodes, E-field direction \vec{n} is transverse where polarized photoluminescence (PL) spectra of aligned NaYF₄:Eu nanorods are measured. Polarized photoluminescence spectra of orientation-controlled NaYF₄:Eu nanorods measured at different E-field intensity of (b) 0 (c) 0.04 (d) 0.08 and (e) 0.19 V/µm (f = 1 kHz) with the polarizer set to parallel (I_I, red line) and perpendicular (I₁, blue line) to the direction of E-field direction \vec{n} (f) Reference spectra (I_n, I_o) obtained from aligned nanorods under the E-field (at saturated voltage, E ~ 0.47 V/µm) and from the single nanorod.

Nanorods submitted in such in-plane E-field begin to align parallel to field direction \dot{n} and in-plane order parameter **S** increases as schematized in **Figure S2a**. When there is no applied E-field, measured spectra at two orthogonal polarization shows negligible changes as nanorods are randomly oriented (**Figure S2b**). Upon increasing E-field strength, observed line shape of PL signal is different when measured with a polarizer set to parallel (I_{II}) and perpendicular (I_⊥) to \vec{n} (**Figure S2c-e**). When E-field intensity is higher than ~ 0.47 V/µm, line shape showed no longer changes. At this saturating E-field intensity, the line shape of π signal obtained from I_{II} (red line) and the σ signal obtained from I_⊥ (blue line) is identical to those obtained from the single nanorod (magenta and olive line), indicating alignment of nanorods by E-field is close to perfect in-plane alignment (**S**~1) (**Figure S2f**).

Line shape comparison of $I_{\pi} + I_{\sigma}$ and $I_{\pi+\sigma}$

Figure S3. Sum of separately measured emission spectra of π and σ configuration $(I_{\pi}+I_{\sigma})$ from the electrically aligned NaYF₄:Eu nanorod assembly and the emission spectrum of randomly deposited NaYF₄:Eu nanorods lying on the substrate $(I_{\pi+\sigma})$.

Photoluminescence signal of NaYF₄:Eu nanorods as a function of relaxation time after the E-field turned off from saturating E-field

Figure S4. Photoluminescence spectra of NaYF₄:Eu nanorods collected as a function of relaxation time after the E-field field turned off from the saturating E-field. All spectra are normalized to the intensity at peak λ ~615 nm.

Simulated profile of homeotropic order parameter analysis

Figure S5. Simulated homeotropic order parameter S_{homeo} as a function of $I_{\pi+\sigma}$ contribution comparing to I_{α} . Simulation is made according to Equation 5.

NaYF₄:Eu nanorods characterization

Figure S6. (a) Scanning electron microscopy (SEM) image of NaYF₄:Eu nanorods. (b) X-ray diffraction (XRD) pattern of NaYF₄:Eu nanorods. Reference pattern of hexagonal β -NaYF₄ (JCPDS 16-0334) is plotted in red line.