Supporting Information

A heat and force locating sensor in nanoscale precision: A knitted graphene

sheet

Ning Wei^{a, #}, Zhen Li^{a, #}, Zhi-Hui Li^b, Chao Zhang^c, Chunlei Wang^d, Junhua Zhao^{a,*},

Kun Cai^{e,*}

^aJiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China

^b China Aerodynamics Research and Development Center, P.O.Box 211, Mianyang

621000, China; National Laboratory for Computational Fluid Dynamics, BUAA,

No.37 Xueyuan Road, Beijing 100191, China

^cSchool of Water Conservancy Engineering, Zhengzhou University, Zhengzhou,

450001, China

^d Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute,

Chinese Academy of Sciences, Shanghai 201204, China.

^e School of science, Harbin Institute of Technology, Shen Zhen 518055, China; School of Engineering, RMIT University, Bundoora, VIC 3083, Australia

AUTHOR INFORMATION

[#]Ning Wei and Zhen Li contributed equally to this work and should be regarded as cofirst authors. *Corresponding author. E-mail address: junhua.zhao@163.com (Junhua Zhao)

*Corresponding author. E-mail address: kun.cai@rmit.edu.au (Kun Cai)

Figure S1. Top, side and perspective views of KGS (6,6) with edges terminated by hydrogen atoms.

Figure S2. Atomic temperature distribution on five KGS models under contacting with a small heat source.

Fig. S3. Temperature variation of GNRs in KGS vs. simulation time with a small heat source.

Figure S4. Atomic temperature distribution on KGS models under contacting with a large heat source.

Fig. S5. Temperature variation of GNRs in KGS models vs. simulation time using a large heat source.

Fig. S6. Deformation and atomic stress distribution of KGS (8, 8) under indentation using a small indentor.

Fig. S7. Deformation and atomic stress distribution of KGS (14, 14) under indentation using a large indentor.

Model	No. Atom	L	SHS <i>t</i> _window	LHS <i>t</i> _window
KGS(M,N)	(count)	(nm)	(ns)	(ns)
KGS(6,6)	4320	7.6	0.3	0.052
KGS(8,8)	7680	10.07	0.434	0.074
KGS(10,10)	12000	12.59	0.61	0.1
KGS(12,12)	17280	15.11	0.768	0.132
KGS(14,14)	23520	17.64	0.96	0.16

Table 1. Model information of KGSs and their corresponding $t_{\rm windows}$.