Supporting Information

Accurate Electronic Properties and Nonlinear Optical Response of Two-dimensional $\mathrm{MA}_{2} \mathrm{Z}_{4}$

Jia-Shu YANG ${ }^{1}$, Luneng Zhao ${ }^{1}$, Shi-Qi LI ${ }^{1 *}$, Hongsheng Liu ${ }^{1}$, Lu Wang ${ }^{2}$, Maodu Chen ${ }^{1}$, Junfeng Gao ${ }^{* *}$, Jijun Zhao ${ }^{1}$
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
2. Institute of Functional Nano \& Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials \& Devices, Soochow University, Suzhou, Jiangsu 215123, China

S1 The second-order coefficients for $\mathrm{MA}_{2} \mathrm{Z}_{4}$ family

Figure S1. Besides the large d_{16}, d_{21} and d_{22}, other small nonlinear coefficients of second-order susceptibilities of explored $\mathrm{MA}_{2} \mathrm{Z}_{4}$.

S2 Photon energy-dependent imaginary and real components of second-order coefficients for $\mathrm{MA}_{2} \mathrm{Z}_{4}$ family

Figure S2. Photon energy-dependent imaginary and real components of second-order coefficients for $\mathrm{MA}_{2} \mathrm{Z}_{4}$ family.

S3 Polar plot of SHG intensity as a function of azimuthal angle and incident angle

Considering the sample shed by the linearly polarized pump light with an incident angle θ, the electric field of the pump light can be given as follows:

$$
\left[\begin{array}{l}
E_{x} \tag{S1}\\
E_{y} \\
E_{z}
\end{array}\right]=\left[\begin{array}{c}
E_{0} \cos [\theta] \\
0 \\
E_{0} \sin [\theta]
\end{array}\right]
$$

The relationship between the second order nonlinear susceptibility $\chi_{i j k}^{(2)}$ and the second-order nonlinear coefficient $d_{\mu L}$ can be described as:

$$
d_{\mu L}=\frac{1}{2} \chi_{i j k}^{(2)}=\left[\begin{array}{llllll}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36}
\end{array}\right] \iota^{*}
$$

MERGEFORMAT (S2)
By the use of rotation operation $T(\phi)$, we can obtain the transformed tensor containing azimuthal angle:

$$
\begin{equation*}
d_{i, j, k}^{(2)}{ }^{\prime}=\sum_{f=1}^{3} T_{i, f} \times \sum_{g=1}^{3} T_{j, g} \times \sum_{h=1}^{3} T_{k, h} \times d_{f, g, h}^{(2)} \tag{*}
\end{equation*}
$$

MERGEFORMAT (S3)

$$
T(\phi)=\left[\begin{array}{ccc}
\cos [\phi] & \sin [\phi] & 0 \tag{S4}\\
-\sin [\phi] & \cos [\phi] & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Here ϕ is the azimuthal angle between the mirror plane in the crystal structure and the polarization of the pump beam. $T_{i, f}, T_{j, g}, T_{k, h}$ is a component in $T(\phi)$. Thus the SHG elements can be expressed as:

$$
\left[\begin{array}{c}
P_{x}(2 \omega) \\
P_{y}(2 \omega) \\
P_{z}(2 \omega)
\end{array}\right]=2 \varepsilon_{0} d_{\mu L}^{\prime}(\phi)\left[\begin{array}{c}
E_{x}^{2}(\omega, \theta) \\
E_{y}^{2}(\omega, \theta) \\
E_{z}^{2}(\omega, \theta) \\
2 E_{y}(\omega, \theta) E_{z}(\omega, \theta) \\
2 E_{z}(\omega, \theta) E_{x}(\omega, \theta) \\
2 E_{x}(\omega, \theta) E_{y}(\omega, \theta)
\end{array}\right] \text { ।*MERGEFORMAT }
$$

(S5)
where ε_{0} represents the permittivity of the space.
With the calculated nonzero second-order nonlinear coefficients and their relationship, the SHG polarization components from $\mathrm{MA}_{2} Z_{4}$ can be expressed as:

$$
\begin{aligned}
P_{M A_{2} Z_{4}}= & {\left[\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right]=2 \varepsilon_{0}\left[\begin{array}{c}
-d_{22} E_{0}^{2} \cos ^{2}[\theta] \sin [3 \phi] \\
-d_{22} E_{0}^{2} \cos ^{2}[\theta] \cos [3 \phi] \\
0
\end{array}\right] \backslash^{*} } \\
& \text { MERGEFORMAT (S6) }
\end{aligned}
$$

Thus, the two polarization components (parallel and perpendicular) of SHG intensity as a function of azimuthal and incident angle can be described as:

$$
\begin{aligned}
& I_{/ /} \propto\left[-P_{x}\left(d_{\mu L}, \phi\right) \cos [\theta]+P_{z}\left(d_{\mu L}, \phi\right) \sin [\theta]\right]^{2} \backslash^{*} \\
& \text { MERGEFORMAT (S7) } \\
& I_{\perp} \propto P_{y}^{2}\left(d_{\mu L}, \phi\right) \quad \quad{ }^{*} \text { MERGEFORMAT (S8) }
\end{aligned}
$$

Lastly, the $I_{/ /}$and I_{\perp} from $\mathrm{MA}_{2} \mathrm{Z}_{4}$ can be expressed as:

$$
\begin{array}{ll}
I_{/ /} \propto d_{22}^{2} \sin ^{2}[3 \phi] \cos ^{4}[\theta] & \quad \text { }{ }^{*} \text { MERGEFORMAT (S9) } \\
I_{\perp} \propto d_{22}^{2} \cos ^{2}[3 \phi] \cos ^{4}[\theta] & \backslash * \text { MERGEFORMAT (S10) }
\end{array}
$$

S4 Polar plots of SHG intensity from $\mathrm{MA}_{2} \mathrm{Z}_{4}$ family under different

incident photon energy

$\mathrm{CrSi}_{2} \mathrm{~N}_{4} \quad \mathrm{Max}\left|\mathrm{d}_{22}\right|^{2}=6.8 \times 10^{6} \mathrm{pm}^{2} / V^{2}$
$\mathrm{ZrSi}_{2} \mathrm{~N}_{4} \quad \operatorname{Max}\left|d_{22}\right|^{2}=5.3 \times 10^{4} \mathrm{pm}^{2} / V^{2}$
(b)
$-I_{/} @ 3.26 \mathrm{eV}$
$60^{\circ} 1_{1} @ 3.26 \mathrm{eV}$
${ }_{135^{\circ}}^{120^{\circ}} \underbrace{60^{\circ} 1^{\circ}}_{45^{\circ}}$
$\mathrm{MoSi}_{2} \mathrm{Hf}_{4} \quad$ Max $\left|d_{22}\right|^{2}=1.4 \times 10^{7} \mathrm{pm}^{2} / V^{2}$
(c)
$-l_{\|} @ 1.50 \mathrm{eV}$

$\mathrm{MoSi}_{2} \mathrm{~N}_{4}$
$\operatorname{Max}\left|d_{22}\right|^{2}=7.6 \times 10^{5} \mathrm{pm}^{2} / V^{2}$
(d) $120^{\circ} \underbrace{105^{\circ} 90^{\circ} \quad 75^{\circ}} \begin{array}{r}-I_{/} I_{1} @ 1.43 \mathrm{eV} \\ \hline 1.4 \mathrm{eV}\end{array}$

$\mathrm{MoGe}_{2} \mathrm{~N}_{4} \quad \mathrm{Max}\left|\mathrm{d}_{22}\right|^{2}=9.3 \times 10^{6} \mathrm{pm}^{2} / \mathrm{V}^{2}$
(g) $\quad \begin{array}{r}105^{\circ} 90^{\circ} \quad 75^{\circ} \quad-l_{/} @ 1.17 \mathrm{eV} \\ 60^{\circ} I_{+} @ 1.17 \mathrm{eV}\end{array}$

$\mathrm{WSi}_{2} \mathrm{~N}_{4} \quad \operatorname{Max}\left|d_{22}\right|^{2}=1.9 \times 10^{5} \mathrm{pm}^{2} / V^{2}$

(e) $20^{\circ}{ }^{105^{\circ} 90^{\circ} .75^{\circ}} \quad \begin{aligned} & -l_{/, @ 2.29 \mathrm{eV}}^{60^{\circ} 1_{1} @ 2.29 \mathrm{eV}} .\end{aligned}$
$135^{\circ} \rightarrow 45^{\circ}$
(h) $120^{105^{\circ} 90^{\circ}} 75^{75^{\circ}}{ }_{60^{\circ} 1}^{-1, @ 0.93 \mathrm{eV}}$
$\mathrm{MoSi}_{2} \mathrm{P}_{4} \quad \mathrm{Max}\left|\mathrm{d}_{22}\right|^{2}=3.5 \times 10^{6} \mathrm{pm}^{2} / \mathrm{V}^{2}$

年
$-1.1 .99 \mathrm{eV}$
(i) $120{ }^{105^{\circ} 90^{\circ} \quad 75^{\circ}}{ }_{60^{\circ} 1_{1} @ 1.99 \mathrm{eV}}$
(f)

- $l_{/ @ 3.40 \mathrm{eV}}$ $135^{\circ}{ }_{45^{\circ}}^{120}$

$135^{\circ} \rightarrow 45^{\circ}$

Figure S4. Polar plots of the SHG intensity from $\mathrm{MA}_{2} \mathrm{Z}_{4}$ as a function of the crystal's azimuthal angle under different photon energy. Their maximum values are represented by the purple circles in the polar plot and listed on the top.

S5 All the locations of prominent peaks and their corresponding d_{22}

in $\mathrm{MA}_{2} \mathrm{Z}_{4}$ family

Compound	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{1} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{2} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathbf{E}_{3} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{4} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{5} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{6} \end{gathered}$	$\begin{gathered} d_{22} \\ (\mathrm{pm} / \mathrm{V}) \\ @ \mathrm{E}_{7} \end{gathered}$
$\mathrm{TiSi}_{2} \mathrm{~N}_{4}$	116.26 @	120.73@	179.10 @	210.75 @	209.40 @	195.28 @	161.10 @
	1.43 eV	1.99 eV	2.84 eV	3.00 eV	3.06 eV	3.17 eV	3.66 eV
$\mathrm{ZrSi}_{2} \mathrm{~N}_{4}$	201.71 @	207.92 @	147.19 @	183.18 @	229.84 @	128.26 @	137.93 @
	1.37 eV	1.89 eV	2.95 eV	3.08 eV	3.26 eV	3.78 eV	4.10 eV
$\mathrm{HfSi}_{2} \mathrm{~N}_{4}$	3697.04 @	1632.08 @	1929.53 @	2575.91 @	2665.56 @	2619.93 @	2115.52 @
	1.50 eV	1.85 eV	2.08 eV	3.34 eV	3.71 eV	4.22 eV	4.44 eV
$\mathrm{CrSi}_{2} \mathrm{~N}_{4}$	1012.17 @	900.43 @	2608.85	582.02 @	747.84 @	414.39 @	382.10 @
	1.21 eV	1.33 eV	@ 1.43 eV	2.70 eV	2.86 eV	3.19 eV	3.97 eV
$\mathrm{MoSi} \mathrm{N}_{4}$	471.62 @	870.82 @	737.41 @	256.51 @	281.23 @		
	1.65 eV	2.29 eV	3.30 eV	3.58 eV	4.30 eV		
WSi2 N_{4}	239.61 @	147.50 @	176.72 @	184.53 @	441.19 @	199.41 @	129.83 @
	1.70 eV	2.40 eV	2.48 eV	2.98 eV	3.40 eV	3.68 eV	4.17 eV
MoGe ${ }_{2} \mathrm{~N}_{4}$	3042.65 @	1294.50 @	764.71 @				
	1.17 eV	2.34 eV	2.67 eV				
$\mathrm{MoSi}_{2} \mathrm{P}_{4}$	1874.79 @	1085.45 @	1295.03 @	1129.80 @	1403.39 @	1345.30 @	
	0.93 eV	1.46 eV	1.72 eV	2.16 eV	2.30 eV	2.90 eV	
$\mathrm{MoSi}_{2} \mathrm{As}_{4}$	1052.39 @	2143.43 @	2464.77 @	1017.45 @	1163.34 @	1674.23 @	969.74 @
	0.45 eV	1.55 eV	1.99 eV	2.23 eV	2.73 eV	2.95 eV	3.10 eV

Table S1. All the locations of prominent peaks and their corresponding d_{22} in $M A_{2} Z_{4}$ family.

