## **Supporting Information**

A multi-functional light-driven actuator with an integrated temperature-sensing function based on a carbon nanotube composite Yiwen Xiao<sup>a,b</sup>, Jian Lin<sup>a,b</sup>, Jing Xiao<sup>a,b</sup>, Mingcen Weng<sup>c</sup>, Wei Zhang <sup>a,b,\*</sup>, Peidi Zhou<sup>a,b</sup>, Zhiling Luo<sup>a,b</sup> and Luzhuo Chen <sup>a,b,\*</sup>

<sup>a</sup> Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.

<sup>b</sup> Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China.

<sup>c</sup> School of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China.

\*E-mail: ChenLZ@fjnu.edu.cn (L. Chen), wzhang721@163.com (W. Zhang)



Fig. S1. Length change of the MC film as a function of temperature.



Fig. S2. Optical photo of the flexible and self-supporting CNT-MC film.



Fig. S3. Absorbance spectra of the CNT-MC film and BOPP film in the wavelength

range from 500 to 2000 nm.



Fig. S4. Blocking force of the CNT-MC/BOPP actuator as a function of light power

density.



Fig. S5. Schematic diagram of testing the sensing performance of the CNT-MC/BOPP





Fig. S6. (a)Schematic diagram of tesing the sensing performance of device on a thermostatic heater; (b) Relative resistance change of the CNT-MC film as a function

of temperature change.



Fig. S7. Schematic diagram of the strain test for the CNT-MC film.



Fig. S8. The relative resistance change of CNT-MC film under strain.



Fig. S9. Schematic diagram of the mechanism of strain induced resistance change.



Figure. S10. Optical photos of the tests for the CNT-MC film as a temperature sensor.



Fig. S11. Dimensions of one CNT-MC/BOPP actuator in the intelligent gripper.

| Material                        | Size                                   | Curvature              | Ref.            |
|---------------------------------|----------------------------------------|------------------------|-----------------|
| CNT-MC/BOPP                     | $2.5 \text{ cm} \times 0.5 \text{ cm}$ | $1.03 \text{ cm}^{-1}$ | Our work        |
| SWCNT-poly(N-isopropylacryla    | $5 \text{ cm} \times 0.5 \text{ cm}$   | $0.62 \text{ cm}^{-1}$ | Nano Lett.      |
| mide)/ low density polyethylene |                                        |                        | 2011, 11, 3239. |
| Polycarbonate/CNT               | 2.5 cm in                              | 0. 4 $cm^{-1}$ in      | Nat. Commun.    |
|                                 | diameter                               | diameter               | 2014, 5, 2983.  |
| ACNT/paraffin wax               | $2 \text{ cm} \times 0.4 \text{ cm}$   | $1.48 \text{ cm}^{-1}$ | J. Am. Chem.    |
|                                 |                                        |                        | Soc. 2016,      |
|                                 |                                        |                        | 138, 225.       |
| CNT-boron nitride-epoxy         | $6 \text{ cm} \times 1 \text{ cm}$     | $1.04 \text{ cm}^{-1}$ | Composites,     |
|                                 |                                        |                        | Part B          |
|                                 |                                        |                        | 2014, 62, 256.  |
| CNTs/polyvinylidenefluoride     | 4 cm×0.5 cm                            | $0.6 \text{ cm}^{-1}$  | Macromol.       |
|                                 |                                        |                        | Mater. Eng.     |
|                                 |                                        |                        | 2020, 2000502   |

Table. S1 Actuation performance of CNT-based actuators.