Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Base-promoted 1,6-Conjugate Addition of Alkylazaarenes to *para*-Quinone Methides

Amritha Rayaroth, Rajat Kumar Singh, A. V. Kalyanakrishnan, Krishna Hari, Alagiri Kaliyamoorthy*

School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India *Email: alagiri@iisertvm.ac.in

Table of contents

1.	General information	S2
2.	General Procedure for Synthesis of Compounds 1h, 1o	S2
3.	General Procedure for Synthesis of Compounds 3aa-3ka	S2
4.	Procedure for the Direct Synthesis of Compound 3aa	S3
5.	Lewis acid Screening	. S4
6.	Characterization data for Compounds 1h, 1o, 3aa-3ka	S5
7.	General Procedure for Synthesis of Compound 4a	S18
8.	Characterization data for Compounds 4a	S18
9.	Crystal data for Compound 3aa	S20
10.	References	S21
11.	¹ H and ¹³ C spectra	S22

General information

All reactions were conducted under nitrogen atmosphere using flame dried glassware. All solvents and reagents were obtained from commercial sources and distilled prior to use. Literature procedures were followed for the synthesis of *para*-Quinone Methides **1a-1g**, **1i-1n**, **1p-1r**.¹⁻⁶ Merck silica gel aluminium plates with F-254 indicator was used to perform analytical thin layer chromatography (TLC) and examined under UV light. Flash chromatography was performed on Merck silica gel 230-400 mesh using ethyl acetate (EtOAc) and pet ether as eluents. ¹H and ¹³C NMR were recorded in CDCl₃ on Brucker spectrometer (500 and 125 MHz respectively) using tetramethylsilane as the internal standard. Melting points were not corrected and determined by using a Stuart Melting Point SMP50 apparatus. FT-IR spectra were recorded using IR Prestige-21 SHIMADZU instrument using a KBr disc or pellet. HRMS was recorded using Thermo Scientific Q Exactive TM Bench top LC-HRMS instrument. The crystal structure was determined using Bruker Axs Kappa Apex II ScXRD instrument.

General Procedure for the Synthesis of Compounds 1h and 1o

In a Dean-Stark apparatus, a solution of 2,6-di-*tert*-butylphenol (1 equiv) and the corresponding aldehyde (1 equiv) in toluene (5 mL) was heated to reflux. Piperidine (2 equiv) was added dropwise, and then, the reaction mixture was continued to reflux for 12 h. After cooling just below the boiling point of the reaction mixture, acetic anhydride (2 equiv) was added, and stirring was continued for 30 min. Then, the reaction mixture was poured on ice-water and extracted with CH_2Cl_2 (3 x 50 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude product was isolated by silica gel column chromatography using Pet ether/EtOAc (99:1) to obtain the desired the product.

General Procedure for the Synthesis of Compounds 3aa-3ka using NaN(SiMe₃)₂

To a flame-dried test tube equipped with a magnetic stirring bar, NaN(SiMe₃)₂ (2 equiv) and 1,4-dioxane (0.5 mL) was added at room temperature. To this solution, alkylazaarene (3 equiv) was added dropwise under nitrogen. After 5 minutes of stirring, *para*-quinone methide (30 mg, 1 equiv) dissolved in 1,4-dioxane (0.5 mL) was added and stirring was continued for 1 h. The progress of the reaction was monitored by TLC. Finally, the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 20 mL). The organic phase was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography using Pet ether/EtOAc (10:1) to obtain the desired product.

General Procedure for the Synthesis of Compounds 3ea-3fa using KN(SiMe₃)₂

To a flame-dried test tube equipped with a magnetic stirring bar, alkylazaarene (3 equiv) and 1,4-dioxane (0.5 mL) was added at room temperature. To this solution, KN(SiMe₃)₂ (2 equiv) was added under nitrogen. After 5 minutes of stirring, *p*-QMs (30 mg, 1 equiv) dissolved in 1,4-dioxane (0.5 mL) was added and stirring was continued for 1 h. Progress of the reaction was monitored by TLC. Finally, the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 20 mL). The organic phase was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using silica gel to obtain the desired product.

Procedure for the Direct Synthesis of Compound 3aa⁷

In a Dean-Stark apparatus, a solution of 2,6-di-*tert*-butylphenol (58.3 mg, 1 equiv) and the benzaldehyde (30 mg, 1 equiv) in toluene (1 mL) was heated to reflux. Piperidine (55.9 μ L, 2 equiv) was added dropwise. The reaction mixture was continued to reflux for 12 h. After cooling just below the boiling point, acetic anhydride (53.4 μ L, 2 equiv) was added to the reaction mixture, and stirred for 1 h. Then, the reaction mixture was azeotropically concentrated with toluene and CH₂Cl₂ under reduced pressure. To the concentrated mixture, NaN(SiMe₃)₂ (103.7 mg, 2 equiv) and 1,4-dioxane (2.8 mL, 0.1 M) was added. To the stirring solution, 2-methylpyridine (0.08 mL, 3 equiv) was added drop wise and stirred for 1 h. The reaction mixture was quenched with water and extracted with EtOAc (3 x 20 mL). The crude product was isolated by flash column chromatography using petroleum ether and ethyl acetate and afforded the desired product as a white solid in 56% yield (60.9 mg).

Lewis acid Screening

Experimental Procedure: To a flame-dried test tube equipped with a magnetic stirring bar, catalyst (20 mol%), ligand (20 mol%), and DMF (0.5 mL) was added at room temperature and stirred for 5 min. To this solution, 2-methylpyridine (50.3 μ L, 5 equiv) was added under nitrogen. After 5 minutes of stirring, *p*-QM (30 mg, 1 equiv) dissolved in DMF (0.5 mL) was added and stirring was continued for 24 h at 120 °C. The reaction was monitored by TLC.

Typical experimental procedure for the 1,6-conjugate addition reaction in the presence of a in situ generated sodium aryloxide base

To a flame-dried test tube equipped with a magnetic stirring bar, NaN(SiMe₃)₂ (0.2 equiv), 2,6di-*tert*-butyl-4-methylphenol (0.2 equiv) and THF (0.5 mL) was added at room temperature and stirred for 15 minutes. To this solution, 2-methylpyridine (5 equiv) was added dropwise under nitrogen. After 1 hour of stirring, *para*-quinone methide (30 mg, 1 equiv) dissolved in THF (0.5 mL) was added and stirring was continued for 24 h. Finally, the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 20 mL). The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography using petroleum ether/EtOAc (10:1) to obtain the desired product **3aa** (16.5 mg, 42%).

Characterization data

4-(4-(allyloxy)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (1h).

Orange gummy liquid (1.46 g, 75%, 900 mg of aldehyde was used). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 8.7 Hz, 2H), 7.13 (s, 1H), 7.00-6.99 (m, 3H), 6.11-6.04 (m, 1H), 5.45 (dd, J = 17.3, 1.5 Hz, 1H), 5.33 (dd, J = 10.5, 1.2 Hz, 1H), 4.61 (d, J = 5.3 Hz, 2H), 1.33 (s, 9H), 1.32 (s, 9H). ¹³C NMR (120 MHz, CDCl₃): δ (ppm) 186.5, 159.6, 149.0, 147.2, 142.6, 135.4, 132.7, 132.2, 130.6, 128.8, 127.8, 118.1, 115.2, 68.9, 35.4, 34.9, 29.6, 29.5. IR (FT IR, cm⁻¹): 3447, 2955, 1599, 1506, 1256, 1175, 1020, 823. HRMS (m/z): calculated for C₂₄H₃₀O₂ [M + H], 351.2318; found 351.2314.

4-((1-benzyl-1H-indol-3-yl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (10).

Orange solid (533 mg, 52%, 500 mg of 2,6-di-*tert*-butylphenol was used); mp, 130.5-133.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.82 (d, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.46 (s, 1H), 7.41-7.24 (m, 9H), 7.11 (d, *J* = 2.4 Hz, 1H), 5.38 (s, 2H), 1.35 (s, 9H), 1.29 (s, 9H). ¹³C NMR (120 MHz, CDCl₃): δ (ppm) 186.4, 148.0, 146.1, 136.7, 135.6, 135.3, 134.5, 130.6, 129.2, 128.40, 128.38, 128.33, 128.1, 127.6, 123.5, 121.5, 119.3, 113.3, 110.3, 50.8, 35.4, 34.9, 29.6, 29.58. IR (FT IR, cm⁻¹): 2951, 1601, 1545, 1510, 1352, 1175, 943, 745. HRMS (m/z): calculated for C₃₀H₃₃NO [M + H], 424.2634; found 424.2634.

2,6-di-tert-butyl-4-(1-phenyl-2-(pyridin-2-yl)ethyl)phenol (3aa).

White solid (36 mg, 91%); mp, 160.4-167.1 °C. Recrystallised from CHCl₃/hexane. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.51 (d, *J* = 4.1 Hz, 1H), 7.40 (td, *J* = 7.6, 1.8 Hz, 1H), 7.25-7.21 (m, 4H), 7.14-7.11 (m, 1H), 7.03-7.00 (m, 1H), 6.98 (s, 2H), 6.83 (d, *J* = 7.8 Hz, 1H), 5.00 (s, 1H), 4.49 (t, *J* = 8.0 Hz, 1H), 3.52-3.41 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.4, 151.9, 149.1, 144.5, 135.8, 135.4, 134.9, 128.2, 128.1, 125.9, 124.5, 123.9, 120.9, 51.2, 45.2, 34.3, 30.3. IR (FT IR, cm⁻¹): 3312, 2957, 1595, 1435, 1097, 700, 469. HRMS (m/z): calculated for C₂₇H₃₃NO [M + H], 388.2634; found: 388.2626.

2,6-di-tert-butyl-4-(1-(naphthalen-1-yl)-2-(pyridin-2-yl)ethyl)phenol (3ab).

Brown solid (36.8 mg, 97%); mp, 159.6-163.6 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, *J* = 4.7 Hz, 1H), 8.21 (d, *J* = 9.0 Hz, 1H), 7.81-7.79 (m, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.57 (d, *J* = 7.1 Hz, 1H), 7.46-7.35 (m, 4H), 7.01-6.99 (m, 1H), 6.97 (s, 2H), 6.82 (d, *J* = 7.8 Hz, 1H), 5.34 (t, *J* = 7.8 Hz, 1H), 4.95 (s, 1H), 3.66-3.62 (m, 1H), 3.55-3.50 (m, 1H), 1.31 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.5, 151.9, 149.2, 140.4, 135.8, 135.4, 134.4, 133.9, 132.0, 128.6, 126.8, 125.7, 125.3, 125.2, 124.7, 124.4, 124.2, 123.9, 120.9, 46.0, 45.4, 34.3, 30.3. IR (FT IR, cm⁻¹): 3377, 2953, 1595, 1433, 1190, 777. HRMS (m/z): calculated for C₃₁H₃₅NO [M + H], 438.2791; found: 438.2783.

4-(1-([1,1'-biphenyl]-4-yl)-2-(pyridin-2-yl)ethyl)-2,6-di-tert-butylphenol (3ac).

Brown gummy oil (34.5 mg, 92%). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.57 (d, J = 4.7 Hz, 1H), 7.56 (d, J = 7.7 Hz, 2H), 7.48-7.44 (m, 3H), 7.42-7.38 (m, 2H), 7.34-7.29 (m, 3H), 7.08-7.05 (m, 1H), 7.02 (s, 2H), 6.88 (d, J = 7.8 Hz, 1H), 5.02 (s, 1H), 4.54 (t, J = 8 Hz, 1H), 3.59-3.46 (m, 2H), 1.37 (s, 18 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.9, 152.1, 148.6, 143.5, 140.9, 138.7, 136.5, 135.6, 134.6, 128.7, 128.5, 127.0, 126.9, 124.5, 124.2, 121.2, 50.9, 44.7, 34.4, 30.3. IR (FT IR, cm⁻¹): 3635, 2954, 1593, 1487, 1433, 1234, 763, 689. HRMS (m/z): calculated for C₃₃H₃₇NO [M + H], 464.2947; found: 464.2944.

2,6-di-tert-butyl-4-(2-(pyridin-2-yl)-1-(o-tolyl)ethyl)phenol (3ad).

Yellow solid (37.2 mg, 95%); mp, 136.4-139.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, *J* = 4.5 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.41-7.38 (m, 1H), 7.19-7.17 (m, 1H), 7.07-7.01 (m, 3H), 6.89 (s, 2H), 6.77 (d, *J* = 7.8 Hz, 1H)), 4.97 (s, 1H), 4.67 (t, *J* = 7.9Hz, 1H), 3.50-3.39 (m, 2H), 2.19 (s, 3H), 1.33 (s, 18 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.5, 151.8, 149.0, 142.4, 136.4, 135.8, 135.3, 134.3, 130.3, 126.7, 125.82, 125.77, 124.7, 123.9, 120.9, 46.7, 45.2, 34.3, 30.3, 19.9. IR (FT IR, cm⁻¹): 3377, 2953, 1595, 1433, 1193, 1002, 754. HRMS (m/z): calculated for C₂₈H₃₅NO [M + H], 402.2791; found: 402.2784.

2,6-di-tert-butyl-4-(2-(pyridin-2-yl)-1-(p-tolyl)ethyl)phenol (3ae).

Yellow solid (35.9 mg, 92%); mp, 112.6-116.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.53 (d, *J* = 4.1 Hz, 1H), 7.45-7.42 (m, 1H), 7.14 (d, *J* = 7.7 Hz, 2H), 7.06-7.02 (m, 3H), 6.98 (s, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 4.99 (s, 1H), 4.45 (t, *J* = 8 Hz, 1H), 3.53-3.41 (m, 2H), 2.27 (s, 3H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.2, 151.9, 148.6, 141.3, 136.3, 135.45, 135.38, 134.9, 128.9, 127.9, 124.5, 124.1, 121.1, 50.8, 44.8, 34.3, 30.3, 21.0. IR (FT IR, cm⁻¹): 3435, 2957, 1595, 1435, 1197, 815, 617. HRMS (m/z): calculated for C₂₈H₃₅NO [M + H], 402.2791; found 402.2787.

2,6-di-tert-butyl-4-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)ethyl)phenol (3af).

Yellowish brown solid (36.7 mg, 95%); mp, 120.5-123.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.53 (d, *J* = 4.2 Hz, 1H), 7.46-7.43 (m, 1H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.07-7.05 (m, 1H), 6.97 (s, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.99 (s, 1H), 4.44 (t, *J* = 8.0 Hz, 1H), 3.75 (s, 3H), 3.50-3.40 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.5, 157.7, 151.9, 149.1, 136.6, 135.9, 135.4, 135.3, 128.9, 124.4, 123.9, 120.9, 113.6, 55.2, 50.4, 45.4, 34.3, 30.3. IR (FT IR, cm⁻¹): 3437, 2957, 1591, 1512, 1435, 1246, 1184, 1115, 1038, 770. HRMS (m/z): calculated for C₂₈H₃₅NO₂ [M + H], 418.2740; found: 418.2731.

2,6-di-tert-butyl-4-(1-(3,4-dimethoxyphenyl)-2-(pyridin-2-yl)ethyl)phenol (3ag).

Yellow gummy oil (26.5 mg, 70%). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, J = 4.0 Hz, 1H), 7.43-7.40 (m, 1H), 7.04-7.02 (m, 1H), 6.99 (s, 2H), 6.83 (d, J = 7.7 Hz, 1H), 6.79-6.74 (m, 3H), 5.01 (s, 1H), 4.43 (t, J = 8.0 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.46-3.38 (m, 2H), 1.37 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.4, 151.9, 149.1, 148.5, 147.1, 137.1,

135.9, 135.5, 134.9, 124.4, 123.9, 120.9, 119.9, 111.8, 110.9, 55.80, 55.75, 50.8, 45.5, 34.4, 30.3. IR (FT IR, cm⁻¹): 3638, 2955, 1514, 1436, 1261, 1028, 768. HRMS (m/z): calculated for C₂₉H₃₇NO₃ [M + H], 448.2846; found: 448.2843.

4-(1-(4-(allyloxy)phenyl)-2-(pyridin-2-yl)ethyl)-2,6-di-tert-butylphenol (3ah).

Brown solid (32.5 mg, 86%); mp, 107.7-109.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, *J* = 4.2 Hz, 1H), 7.42-7.39 (m, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.04-7.01 (m, 1H), 6.96 (s, 2H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.07-5.99 (m, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.25(d, *J* = 10.3 Hz, 1H), 4.99 (s, 1H), 4.47 (d, *J* = 5.0 Hz, 2H), 4.43 (t, *J* = 8 Hz, 1H), 3.48-3.37 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.5, 156.8, 151.9, 149.1, 136.8, 135.8, 135.4, 135.2, 133.5, 129.0, 124.4, 123.9, 120.9, 117.5, 114.4, 68.8, 50.4, 45.4, 34.3, 30.3. IR (FT IR, cm⁻¹): 3638, 2954, 1589, 1510, 1433, 1228, 991, 826. HRMS (m/z): calculated for C₃₀H₃₇NO₂ [M + H], 444.2897; found: 444.2894.

4-(1-(4-(benzyloxy)phenyl)-2-(pyridin-2-yl)ethyl)-2,6-di-tert-butylphenol (3ai).

Yellowish brown solid (27.6 mg, 75%); mp, 122.6-125.7 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, *J* = 4.0 Hz, 1H), 7.43-7.40 (m, 3H), 7.38-7.35 (m, 2H), 7.32-7.29 (m, 1H), 7.16 (d, *J* = 8.3 Hz, 2H), 7.04-7.02 (m, 1H), 6.96 (s, 2H), 6.85-6.82 (m, 3H), 5.00 (s, 3H), 4.44 (t, *J* = 8.0 Hz, 1H), 3.48-3.38 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.4, 157.0, 151.9, 148.9, 137.2, 136.9, 135.9, 135.4, 135.2, 129.0, 128.5, 127.9, 127.5, 124.4, 123.9, 120.9, 114.6, 69.9, 50.4, 45.2, 34.3, 30.3. IR (FT IR, cm⁻¹): 3638, 2955, 1510, 1435, 1246, 1042, 737. HRMS (m/z): calculated for C₃₄H₃₉NO₂ [M + H], 494.3053; found: 494.3051.

2,6-di-tert-butyl-4-(1-(4-fluorophenyl)-2-(pyridin-2-yl)ethyl)phenol (3aj).

Yellow solid (34.3 mg, 88%); mp, 145.9-149.2 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.54 (d, J = 4.4 Hz, 1H), 7.46-7.43 (m, 1H), 7.20-7.18 (m, 2H), 7.07-7.05 (m,1H), 6.95 (s, 2H), 6.92-6.89 (m, 2H), 6.84 (d, J = 7.8 Hz, 1H), 5.03 (s, 1H), 4.50 (t, J = 8.0 Hz, 1H), 3.49-3.40 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 162.2, 160.3, 159.9, 152.1, 148.8, 140.0 (d, J = 3 Hz), 136.3, 135.6, 134.6, 129.5 (d, J = 7.6), 124.4, 124.1, 121.2, 115.0, 114.9, 50.3, 44.9, 34.4, 30.3. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -117.49. IR (FT IR, cm⁻¹): 3442, 2957, 1595, 1508, 1435, 1228, 1097, 835. HRMS (m/z): calculated for C₂₇H₃₂FNO [M + H], 406.2540; found: 406.2535.

2,6-di-tert-butyl-4-(1-(2-chlorophenyl)-2-(pyridin-2-yl)ethyl)phenol (3ak).

Off-white solid (37.2 mg, 97%); mp, 127.6-132.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.49 (d, J = 4.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.27 (s, 1H), 7.22-7.19 (m, 1H), 7.08-7.01 (m, 4H), 6.94 (d, J = 7.8 Hz, 1H), 5.05 (t, J = 8.1 Hz, 1H), 5.02 (s, 1H), 3.56-3.46 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.9, 152.1, 149.1, 141.9, 135.9, 135.4, 134.2, 133.4, 129.6, 128.7, 127.2, 126.7, 124.7, 123.4, 121.1, 46.4, 44.2, 34.3, 30.3. IR (FT IR, cm⁻¹): 2957, 1595, 1477, 1435, 1192, 754. HRMS (m/z): calculated for C₂₇H₃₂CINO [M + H], 422.2245; found: 422.2240.

2,6-di-tert-butyl-4-(1-(4-chlorophenyl)-2-(pyridin-2-yl)ethyl)phenol (3al).

Off-white solid (35.1 mg, 91%); mp, 122.8-126.6 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, J = 4.2 Hz, 1H), 7.45-7.42 (m, 1H), 7.19-7.15 (m, 4H), 7.06-7.03 (m, 1 H), 6.95 (s, 2 H), 6.83 (d, J = 7.8 Hz, 1H), 5.03 (s, 1H), 4.48 (t, J = 8.0 Hz, 1H), 3.47-3.39 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.9, 152.1, 149.1, 142.9, 136.1, 135.6, 134.4, 131.6, 129.5, 128.3, 124.4, 123.9, 121.2, 50.5, 44.8, 34.4, 30.3. IR (FT IR, cm⁻¹): 3362, 2957, 1595, 1487, 1435, 1094, 1009, 625. HRMS (m/z): calculated for C₂₇H₃₂CINO [M + H], 422.2245; found: 422.2242.

4-(1-(4-bromophenyl)-2-(pyridin-2-yl)ethyl)-2,6-di-tert-butylphenol (3am).

Yellow solid (28.6 mg, 76%); mp, 116.4-120.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.56 (d, *J* = 3.9 Hz, 1H), 7.49-7.47 (m, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.12-7.07 (m, 3 H), 6.95 (s, 2 H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.04 (s, 1H), 4.48 (t, *J* = 8.0 Hz, 1H), 3.51-3.41 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.5, 152.2, 148.5, 143.3, 136.8, 135.7, 134.0, 131.3, 129.9, 124.4, 124.2, 121.4, 119.8, 50.5, 44.3, 34.4, 30.3. IR (FT IR, cm⁻¹): 3298, 2957, 1595, 1485, 1435, 1115, 1007, 810, 758. HRMS (m/z): calculated for C₂₇H₃₂BrNO [M + H], 466.1740; found: 466.1738.

4-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(pyridin-2-yl)ethyl)benzonitrile (3an).

Yellow gummy oil (20.5 mg, 53%). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.51 (d, *J* = 3.9 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.44 (td, *J* = 7.6, 1.7 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.07-7.04 (m, 1H), 6.93 (s, 2H), 6.84 (d, *J* = 7.7 Hz, 1H), 5.07 (s, 1H), 4.59 (t, *J* = 8.0 Hz, 1H), 3.46 (d, *J* = 8 Hz, 2H) 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.4, 152.4, 150.2, 149.2, 136.1, 135.9, 133.4, 132.1, 128.9, 124.4, 123.9, 121.3, 119.1, 109.8, 51.1, 44.4, 34.4, 30.3. IR (FT IR, cm⁻¹): 3427, 2951, 2361, 1595, 1433, 1132, 669. HRMS (m/z): calculated for C₂₈H₃₂N₂O [M + H], 413.2587; found: 413.2588.

4-(1-(1-benzyl-1H-indol-3-yl)-2-(pyridin-2-yl)ethyl)-2,6-di-tert-butylphenol (3ao).

Brown solid (32.7 mg, 90%); mp, 129.2-135.3 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.51 (d, *J* = 4.1 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.37 (td, *J* = 7.7, 1.7 Hz, 1H), 7.25-7.22 (m, 3H), 7.18(d, *J* = 8.2 Hz, 1H), 7.11-7.08 (m, 1H), 7.05 (s, 2H), 7.03-7.00 (m, 3H), 6.99-6.96 (m, 2H), 6.82 (d, *J* = 7.8 Hz, 1H), 5.31-5.22 (m, 2H), 4.96 (s, 1H), 4.73 (t, *J* = 8.0 Hz, 1H), 3.65-3.60 (m, 1H), 3.44-3.39 (m, 1H), 1.33 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.7, 151.9, 148.8, 137.9, 136.8, 135.9, 135.3, 135.0, 128.7, 127.9, 127.4, 126.5, 125.9, 124.4, 123.9, 121.5, 120.9, 120.2, 118.8, 118.6, 109.4, 49.7, 45.5, 43.1, 34.3, 30.4. IR (FT IR, cm⁻¹): 3608, 3447, 2953, 1591, 1433, 1366, 1236, 1119, 742. HRMS (m/z): calculated for C₃₆H₄₀N₂O [M + H], 517.3213; found 517.3209.

2,6-di-tert-butyl-4-(1-(furan-2-yl)-2-(pyridin-2-yl)ethyl)phenol (3ap).

Brown solid (32.1 mg, 81%); mp, 126.2-132.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.53 (d, *J* = 4.3 Hz, 1H), 7.44 (td, *J* = 7.6, 1.5 Hz, 1H), 7.31 (d, *J* = 1.1 Hz, 1H), 7.07-7.05 (m, 1H), 6.97 (s, 2H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.23-6.22 (m, 1H), 6.03 (d, *J* = 3.1 Hz, 1H), 5.03 (s, 1H),

4.48 (t, J = 8.0 Hz, 1H), 3.54-3.50 (m, 1H), 3.28-3.23 (m, 1H), 1.37 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.8, 157.1, 152.3, 148.9, 141.2, 136.0, 135.6, 132.7, 124.4, 123.8, 121.2, 109.9, 105.9, 45.4, 44.3, 34.3, 30.3. IR (FT IR, cm⁻¹): 3423, 2957, 1435, 1115, 729. HRMS (m/z): calculated for C₂₅H₃₁NO₂ [M + H], 378.2427; found 378.2423.

2,6-di-tert-butyl-4-(2-(pyridin-2-yl)-1-(thiophen-2-yl)ethyl)phenol (3aq).

Brown solid (35.9 mg, 91%); mp, 141.8-144.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.54 (s, 1H), 7.42 (s, 1H), 7.09-7.04 (m, 4H), 6.85 (s, 2H), 6.77 (s, 1H), 5.03 (s, 1H), 4.73 (t, *J* = 7.8 Hz, 1H), 3.54-3.49 (m, 1H), 3.40-3.36 (m, 1H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.8, 152.3, 149.1, 148.8, 135.9, 135.5, 134.4, 126.3, 124.3, 124.2, 124.0, 123.3, 121.1, 46.97, 46.91, 34.3, 30.3. IR (FT IR, cm⁻¹): 3444, 2954, 2365, 1595, 1435, 692. HRMS (m/z): calculated for C₂₅H₃₁NOS [M + H], 394.2199; found 394.2196.

2,6-di-tert-butyl-4-(3-methyl-1-(pyridin-2-yl)butan-2-yl)phenol (3ar).

Brown gummy oil (18.6 mg, 46%). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.48 (d, *J* = 3.7 Hz, 1H), 7.37-7.34 (m, 1H), 7.00-6.98 (m, 1H), 6.76 (s, 2H), 6.69 (d, *J* = 7.7 Hz, 1H), 4.92 (s, 1H), 3.29 (dd, *J* = 12.7, 5.5 Hz, 1H), 2.90-2.86 (m, 1H), 2.83-2.78 (m, 1H), 1.94-1.87 (m, 1H), 1.36 (s, 18H), 1.00 (d, *J* = 6.5 Hz, 3H), 0.81 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 161.6, 151.6, 148.7, 135.7, 134.9, 133.4, 124.9, 123.9, 120.6, 52.9, 42.5, 34.2, 32.1, 30.4, 21.2, 20.1. IR (FT IR, cm⁻¹): 2960, 1595, 1433, 1223, 1007, 773. HRMS (m/z): calculated for C₂₄H₃₅NO [M + H], 354.2791; found 354.2786.

2,6-diisopropyl-4-(1-phenyl-2-(pyridin-2-yl)ethyl)phenol (3as).

White solid (20.3 mg, 50%); mp, 149.8-154.9 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (d, *J* = 4.0 Hz, 1H), 7.40 (td, *J* = 7.5, 1.5 Hz, 1H), 7.25-7.21 (m, 4H), 7.14-7.12 (m, 1H), 7.03-7.01 (m, 1H), 6.87 (s, 2H), 6.83 (d, *J* = 7.5 Hz, 1H) 4.75 (s, 1H), 4.51 (t, *J* = 8.0 Hz, 1H), 3.53-3.43 (m, 2H), 3.11-3.06 (m, 2H), 1.19 (d, *J* = 7.0 Hz, 6H), 1.16 (d, *J* = 7.0 Hz, 6H), .¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.3, 149.1, 148.2, 144.6, 136.0, 135.9, 133.4, 128.2, 128.0, 125.9, 123.9, 123.1, 120.9, 50.9, 44.9, 27.2, 22.79, 22.74. IR (FT IR, cm⁻¹): 3317, 2972, 1692, 1466, 1129, 951, 816. HRMS (m/z): calculated for C₂₄H₃₅NO [M + H], 360.2321; found 360.2312.

2,6-di-tert-butyl-4-(1-phenyl-2-(quinolin-2-yl)ethyl)phenol (3ba).

Off-white solid (43.7 mg, 98%); mp, 166.1-175.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.08-8.05 (m, 1H), 7.92-7.89 (m, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.68-7.65 (m, 1H), 7.48-7.45 (m, 1H), 7.30 (d, J = 7.4 Hz, 2H), 7.24-7.21 (m, 2H), 7.14-7.11 (m, 1H), 7.01 (s, 3H), 4.99 (s, 1H), 4.59 (t, J = 8.0 Hz, 1H), 3.75-3.63 (m, 2H), 1.33 (s, 18 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 161.1, 152.0, 147.6, 144.5, 135.9, 135.5, 134.7, 129.4, 128.6, 128.3, 128.1, 127.4, 126.7, 126.0, 125.8, 124.6, 122.2, 51.3, 45.6, 34.3, 30.3. IR (FT IR, cm⁻¹): 2953, 2561, 1597, 1388, 1224, 1120, 819, 621. HRMS (m/z): calculated for C₃₁H₃₅NO [M + H], 438.2791; found: 438.2787.

2,6-di-tert-butyl-4-(2-(6-methylpyridin-2-yl)-1-phenylethyl)phenol (3ca).

White solid (32.6 mg, 80%); mp, 121.9-127.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.31-7.21 (m, 5H), 7.14-7.11 (m, 1H), 6.96 (s, 2H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 7.7 Hz, 1H), 4.98 (s, 1H), 4.44 (t, *J* = 8 Hz, 1H), 3.50-3.38 (m, 2H), 2.51 (s, 3H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.7, 157.5, 151.9, 144.7, 135.9, 135.3, 135.0, 128.1, 125.9, 124.6, 120.6, 120.4, 51.1, 44.9, 34.3, 30.3, 24.4. IR (FT IR, cm⁻¹): 3366, 2957, 1595, 1456, 1113, 790, 702. HRMS (m/z): calculated for C₂₈H₃₅NO [M + H], 402.2791; found: 402.2783.

2,6-di-tert-butyl-4-(2-(4,6-dimethylpyridin-2-yl)-1-phenylethyl)phenol (3da).

White solid (32.8 mg, 77%); mp, 144.5-148.3 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.27-7.21 (m, 4H), 7.14-7.11 (m, 1H), 6.93 (s, 2H), 6.70 (s, 1H), 6.44 (s, 1H), 4.97 (s, 1H), 4.42 (t, J = 8 Hz, 1H), 3.45-3.41 (m, 1H), 3.35-3.31 (m, 1H), 2.46 (s, 3H), 2.11 (s, 3H), 1.35 (s, 18 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.5, 157.2, 151.8, 146.8, 144.8, 135.3, 135.1, 128.14, 128.11, 125.8, 124.6, 121.8, 121.4, 51.1, 44.8, 34.3, 30.3, 24.3, 20.7. IR (FT IR, cm⁻¹): 3312, 2949, 1612, 1439, 1223, 702. HRMS (m/z): calculated for C₂₉H₃₇NO [M + H], 416.2947; found: 416.2939.

2,6-di-tert-butyl-4-(1-phenyl-2-(quinolin-4-yl)ethyl)phenol (3ea).

Off-white solid (22.5 mg, 50%); mp, 183.4-187.1 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.66 (d, J = 4.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.72-7.69 (m, 1H), 7.53-7.50 (m, 1H), 7.32-7.29 (m, 3H), 7.25-7.21 (m, 2H), 6.89 (s, 2H), 6.87 (d, J = 4.5 Hz, 1H), 5.06 (s, 1H), 4.34 (t, J = 7.6 Hz, 1H), 3.77 (d, J = 7.6 Hz, 2H), 1.35 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.3, 149.7, 148.2, 146.7, 144.2, 135.7, 134.3, 130.1, 128.9, 128.4, 127.9, 127.8, 126.4, 126.2, 124.4, 123.6, 122.1, 51.7, 38.9, 34.3, 30.2. IR (FT IR, cm⁻¹): 3339, 2943, 1591, 1431, 1228, 1114, 756. HRMS (m/z): calculated for C₃₁H₃₅NO [M + H], 438.2791; found: 438.2787.

2,6-di-tert-butyl-4-(1-phenyl-2-(pyridin-4-yl)ethyl)phenol (3fa).

Off-white solid (83.7 mg, 64%, **1a** (100mg) used); mp, 169.3-172.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.38 (d, J = 3.3 Hz, 2H), 7.27-7.24 (m, 2H), 7.20-7.16 (m, 3H), 6.93 (s, 2H), 6.91 (d, J = 4.3 Hz, 2H), 5.06 (s, 1 H), 4.11 (t, J = 7.8 Hz, 1H), 3.34-3.26 (m, 2H), 1.37 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.3, 150.5, 148.8, 143.9, 135.7, 134.1, 128.4, 127.9, 126.4, 124.8, 124.3, 52.3, 42.2, 34.4, 30.3. IR (FT IR, cm⁻¹): 3445, 2957, 1601, 1433, 1240, 1113, 700. HRMS (m/z): calculated for C₂₇H₃₃NO [M + H], 388.2634; found: 388.2624.

2,6-di-tert-butyl-4-(1-phenyl-2-(pyrazin-2-yl)ethyl)phenol (3ga).

Off-white solid (39.1 mg, 99%); mp, 128.6-131.6 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.47 (s, 1H), 8.30 (s, 1H), 8.11 (s, 1H), 7.25-7.24 (m, 4H), 7.16-7.14 (m, 1H), 6.98 (s, 2H), 5.04 (s, 1H), 4.47 (t, *J* = 8.0 Hz, 1H), 3.53-3.44 (m, 2H), 1.37 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 156.1, 152.2, 145.3, 143.9, 143.8, 141.9, 135.7, 134.1, 128.4, 127.9, 126.3,

124.4, 50.9, 42.2, 34.3, 30.3. IR (FT IR, cm⁻¹): 3584, 2957, 1433, 1240, 1113, 698. HRMS (m/z): calculated for $C_{26}H_{32}N_2O$ [M + H], 389.2587; found: 389.2574.

2,6-di-tert-butyl-4-(1-phenyl-2-(quinoxalin-2-yl)ethyl)phenol (3ha).

Brown solid (40.7 mg, 91%); mp, 149.7-156.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.34 (s, 1H), 8.04 (dd, *J* = 8.3, 0.9 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.75-7.66 (m, 2H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.26-7.23 (m, 2H), 7.16-7.14 (m, 1H), 6.98 (s, 2H), 5.02 (s, 1H), 4.59 (t, *J* = 8.1 Hz, 1H), 3.75-3.65 (m, 2H), 1.32 (s, 18 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 156.0, 152.3, 146.1, 143.9, 142.3, 141.0, 135.7, 134.0, 129.8, 129.1, 129.0, 128.8, 128.5, 127.9, 126.4, 124.5, 51.1, 43.0, 34.3, 30.3. IR (FT IR, cm⁻¹): 3487, 2963, 1433, 1238, 1117, 765, 698. HRMS (m/z): calculated for C₃₀H₃₄N₂O [M + H], 439.2743; found: 439.2730.

2,6-di-tert-butyl-4-(2-(isoquinolin-1-yl)-1-phenylethyl)phenol (3ia).

Off-white solid (41.3 mg, 93%); mp, 180.6-188.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.42 (d, J = 5.7 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.58-7.55 (m, 1H), 7.45 (d, J = 5.7 Hz, 1H), 7.41-7.38 (m, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.26-7.22 (m, 2H), 7.16-7.13 (m, 1H), 6.83 (s, 2H), 4.90 (s, 1H), 4.70 (t, J = 7.8 Hz, 1H), 4.01-3.88 (m, 2H), 1.25 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.6, 151.9, 144.6, 141.8, 136.1, 135.3, 134.8, 129.5, 128.2, 128.1, 127.7, 127.1, 126.7, 125.9, 125.3, 124.6, 119.1, 51.2, 41.3, 34.2, 30.2. IR (FT IR, cm⁻¹): 3422, 2951, 1431, 1357, 1078, 704. HRMS (m/z): calculated for C₃₁H₃₅NO [M + H], 438.2791; found: 438.2778.

4-(2-(benzo[d]thiazol-2-yl)-1-phenylethyl)-2,6-di-tert-butylphenol (3ja).

White solid (24.2 mg, 54%); mp, 167.9-169.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.94 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.43-7.40 (m, 1H), 7.34-7.32 (m, 2H), 7.30-7.26 (m, 3H), 7.19-7.16 (m, 1H), 7.06 (s, 2H), 5.05 (s, 1H), 4.56 (t, *J* = 8 Hz, 1H), 3.88-3.75 (m, 2H), 1.36 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 170.4, 152.9, 152.4, 143.5, 135.8, 135.3, 133.8, 128.5, 127.9, 126.5, 125.8, 124.6, 124.4, 122.5, 121.4, 51.2, 41.1, 34.4, 30.3. IR (FT IR, cm⁻¹): 3568, 2957, 1433, 1101, 802, 696. HRMS (m/z): calculated for C₂₉H₃₃NOS [M + H], 444.2355; found 444.2353.

2,6-di-tert-butyl-4-(1-phenyl-2-(pyridin-2-yl)propyl)phenol (3ka).

Brown gummy oil (31.6 mg, 77%). ¹H NMR (500 MHz, CDCl₃): 8.51 (d, J = 4.7 Hz, 1H), 8.47 (d, J = 4.8 Hz, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.38 (td, J = 7.6, 1.6 Hz, 1H), 7.34-7.31 (m, 3H), 7.21-7.16 (m, 5H), 7.06-7.03 (m, 2H), 6.96-6.93 (m, 4H), 6.81 (s, 2H), 6.77 (d, J = 7.8 Hz, 1H), 5.01 (s, 1H), 4.81 (s, 1H), 4.18 (t, J = 11.4, 2H), 3.70-3.58 (m, 2H), 1.43 (s, 18H), 1.26-1.24 (m, 21H), 1.21 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 165.24, 165.18, 152.1, 151.4, 149.0, 148.9, 144.7, 144.2, 135.9, 135.64, 135.61, 134.9, 134.3, 134.2, 128.5, 128.1, 127.9, 126.0, 125.4, 124.8, 124.7, 123.5, 122.9, 120.9, 120.8, 58.1, 57.9, 47.4, 47.0, 34.4, 34.2, 30.4, 30.3, 20.7, 20.1. IR (FT IR, cm⁻¹): 3639, 3427, 2959, 1593, 1435, 1232, 700. HRMS (m/z): calculated for C₂₈H₃₅NO [M + H], 402.2791; found: 402.2791.

Procedure for de *tert*-butylation of 2,6-di-*tert*-butyl-4-(1-phenyl-2-(pyridin-4-yl)ethyl)phenol (4a)⁸

A flame-dried round bottom flask equipped with a magnetic stirring bar, was charged with 2,6di-*tert*-butyl-4-(1-phenyl-2-(pyridin-4-yl)ethyl)phenol (**3fa**) (150 mg, 1 equiv) in toluene (35 mL) at room temperature. Then a solution of AlCl₃ (311.2 mg, 6 equiv) in MeNO₂ (2 mL) was added in one portion. The mixture was immediately heated to 60 °C by using a preheated oil bath and maintained at the same temperature for 10 min. The mixture was subsequently cooled and poured into a separating funnel containing ice and Et₂O (1:1, 50 mL). The aqueous layer was extracted with Et₂O (3 x 50 mL). The organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel and afforded the desired product as a white solid.

4-(1-phenyl-2-(pyridin-4-yl)ethyl)phenol (4a).9

Off-white solid (93 mg, 87%); mp, 155.8-158.7 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.36 (d, *J* = 4.3 Hz, 2H), 7.28-7.25 (m, 3H), 7.20-7.17 (m, 3H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 4.7 Hz, 2H), 6.71 (d, *J* = 8.3 Hz, 2H), 4.14 (t, *J* = 7.9 Hz, 1H), 3.35-3.26 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 154.9, 150.1, 148.9, 144.0, 135.1, 129.0, 128.5, 127.7, 126.5, 124.8, 115.5, 51.4, 41.7. IR (FT IR, cm⁻¹): 3024, 2604, 1604, 1510, 1253, 833, 804, 559. HRMS (m/z): calculated for C₁₉H₁₇NO [M + H], 276.1382; found 276.1380.

Crystal data and structure refinement for 3aa.

Identification code	Compound_3aa		
CCDC code	1979112		
Empirical formula	C27 H33 N O		
Formula weight	387.54		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 9.3170(9) Å	α= 90°.	
	b = 18.704(2) Å	β= 93.967(4)°.	
	c = 13.6865(14) Å	$\gamma = 90^{\circ}$.	
Volume	2379.4(4) Å ³		
Z	4		
Density (calculated)	1.082 Mg/m ³		
Absorption coefficient	0.064 mm ⁻¹		
F(000)	840		
Crystal size	0.180 x 0.140 x 0.110 mm ³		
Theta range for data collection	2.178 to 24.998°.		
Index ranges	-10<=h<=11, -22<=k<=22, -16<=l<=16		
Reflections collected	32653		
Independent reflections	4184 [R(int) = 0.0426]		
Completeness to theta = 24.998°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.993 and 0.988		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4184 / 0 / 269		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0569, wR2 = 0.1319		
R indices (all data)	R1 = 0.0955, wR2 = 0.1646		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.212 and -0.184 e.Å ⁻³		

References

- 1. A. López, A. Parra, C. Jarava-Barrera and M. Tortosa, Chem. Commun., 2015, 51, 17684.
- 2. Y. Lou, P. Cao, T. Jia, Y. Zhang, M. Wang and J. Liao, *Angew. Chem. Int. Ed.*, 2015, **54**, 12134.
- 3. W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma and C.-A. Fan, *Angew. Chem. Int. Ed.*, 2013, **52**, 9229.
- 4. K. G. Ghosh, P. Chandu, S. Mondal and D. Sureshkumar, Tetrahedron, 2019, 75, 4471.
- 5. V. Reddy and R.V. Anand, Org. Lett., 2015, 17, 3390.
- 6. S. Santra, A. Porey and J. Guin, Asian J. Org. Chem., 2018, 7, 477.
- L. Wang, Y.-X. Jia, J.-M. Zhang, C. Qian and X.-Z. Chen, *Monatsh Chem.* 2014, 145, 1941.
- 8. J. R. Frost, C. B. Cheong and T. J. Donohoe, Synthesis, 2017, 49, 910.
- 9. S. A. Haroutonian, A. W. Scribner and J. A. Katzenellenbogen, Steroids, 1995, 60, 636.

