Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

A visible-light-induced "on-off" one-pot synthesis of 3-arylacetylene coumarins with AIE properties

Xinjie Wu,^{a,‡} Ming Jia,^{b,‡} Mengmeng Huang,^{a,‡} Jung Keun Kim,^a Zheng Zhao,^c Junkai Liu,^c Jinhu Xi,^a Yabo Li^{a,*} and Yangjie Wu^{a,*}

^aCollege of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan

Universities, Zhengzhou University, Zhengzhou 450052, P.R. China. E-mail: wyj@zzu.edu.cn, ybli@zzu.edu.cn.

^bSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China.

^cDepartment of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, P.R. China.

[‡]*These authors contributed equally to this work.*

Table of contents

1. General information	S1
2. UV/Vis absorption spectra, fluorescence emission spectra, measurement and calculation of	
fluorescence quantum yield	S1
3. Photophysical properties of compounds 4a, 4e, 4h, 4n and 4x in different solvents	
4. References	S10
5. NMR spectra of intermediate 5a and all products	S11
6. X-ray data	S42

1. General information

All reactions were performed using quartz tube. Solvents were dried by standard methods before they were used. Aryl alkynoates were synthesized according to the literature.¹ Commercial grade reagents were used without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. All reactions were carried out with photoreactor (Serial No: PEA12) which was purchased from LUOYANG JINFENG ELECTROMECHANICAL EQUIPMENT CO., LTD. The LCD Digital Hotplate Magnetic Stirrer MS-H-Pro+ and Digital Single Channel Adjustable Automatic Electronic Pipette Micropipette dPettee+ were purchased from Dragon Laboratory Instruments Limited. ¹H NMR and ¹³C NMR spectra were recorded on 400 and 100 MHz NMR instruments using CDCl₃ as the solvent and TMS as the internal standard. ¹⁹F NMR spectra was recorded at 376.5 MHz on Bruker DPX-400, the chemical shifts δ are reported relative to CFCl₃ ($\delta = 0$ ppm) as internal standard. The multiplicity of signals is designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd = doublet of doublet. High resolution mass spectra (HRMS) was obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionisation (ESI). The UV/Vis absorption spectra was recorded on a Perkin Elmer Lambda 35 Spectrometer, and the fluorescence emission was recorded using a F-4500 FL spectrophotometer, the solid fluorescence quantum yield spectra was recorded on a C13534 UV-NIR absolute PL Quantum Yield Spectrometer.

2. UV/Vis absorption spectra, fluorescence emission spectra, measurement and

calculation of fluorescence quantum yield

1) UV/Vis absorption spectra

The UV/Vis absorption spectra was recorded in MeCN of a 0.05 mM solution in 10 mm path length quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer.

Figure S1. Absorption spectra of 4a-f in MeCN

Figure S2. Absorption spectra of 4g-l in MeCN

Figure S3. Absorption spectra of 4m-r in MeCN

Figure S4. Absorption spectra of 4s-y in MeCN

2) Fluorescence emission spectra were recorded using a F-4500 FL spectrophotometer in MeCN.

Figure S5. Fluorescence emission spectra of 4a-f in MeCN

Figure S6. Fluorescence emission spectra of 4g-l in MeCN

Figure S7. Fluorescence emission spectra of 4m-r in MeCN

Figure S8. Fluorescence emission spectra of 4s-y in MeCN

3) Measurement and calculation of fluorescence quantum yield

The quantum yields of the different samples were calculated using quinine sulfate (QY = 0.55) as the standard (in 0.1 M H₂SO₄).² Emission spectra of solutions were recorded from 300 to 650 nm, and 360 nm as the excitation wavelength as reference for calculation of quantum yield. Absorption and emission data of each samples were measured in 1 μ M at 360 nm. And absorbance (optical density, OD) of all the samples was recorded at 360 nm. Fluorescence quantum yields were calculated according to equation (1),³ in which

 Φ_{std} is the quantum yield of the standard, F_x and F_{std} are the areas under the emission spectra of the sample and the reference, respectively, A_{std} and A_x are the absorbance of the standard and the sample; η_x^2 and η_{std}^2 are the refractive indices of the standard and the sample in solution.

$$\Phi_{x} = \Phi_{std} \times \frac{F_{x}}{F_{std}} \times \frac{A_{std}}{A_{x}} \times \frac{\eta_{x}^{2}}{\eta_{std}^{2}} \quad (1)$$

coumarins	$\lambda_{abs} \left(nm \right)$	$\lambda_{em} (nm)$	$\Phi_{\rm F}$
4 a	356	451	0.014
4b	361	450	0.017
4c	371	464	0.014
4 d	365	456	0.014
4e	352	445	0.011
4f	352	450	0.009
4g	357	452	0.031
4h	356	450	0.066
4i	354	446	0.026
4j	360	455	0.010
4k	358	450	0.015
41	358	454	0.012
4m	361	456	0.021
4n	368	475	0.080
40	356	449	0.017
4 p	358	451	0.020
4q	357	446	0.012
4r	366	467	0.035
4s	354	449	0.008
4t	358	450	0.019
4u	375	476	0.028
4v	369	460	0.012

Table S1. Absorption, emission maxima and fluorescence quantum yield in acetonitrile solutions.

4 w	370	458	0.013
4x	365	484	0.115
4y	371	506	0.047

3. Photophysical properties of compounds 4a, 4e, 4h, 4n and 4x in different solvents

1) Normalized UV and FL spectra of compounds 4a, 4e, 4h, 4n and 4x in different solvents

All luminescence spectra data were measured at 0.05 mM solution in different solvents, UV is ultraviolet absorption, FL is fluorescence intensity. The UV absorption spectra was measured in quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer, and fluorescence emission spectra were measured by a F-4500 FL spectrophotometer.

Figure S9. Normalized UV and FL spectra of compound 4a in different solvents

Figure S10. Normalized UV and FL spectra of compound 4e in different solvents

Figure S11. Normalized UV and FL spectra of compound 4h in different solvents

Figure S12. Normalized UV and FL spectra of compound 4n in different solvents

Figure S13. Normalized UV and FL spectra of compound 4x in different solvents

2) UV spectra data, FL spectra data and calculation of fluorescence quantum yield of compounds 4a, 4e,
4h, 4n and 4x in different solvents

UV and FL spectra data were measured at 0.05 mM solution in different solvents, data of fluorescence quantum yield were measured at 1 μ M solution in different solvents. UV is ultraviolet absorption, FL is fluorescence emission intensity, St is Stokes shift, Φ_F is fluorescence quantum yield. The UV absorption spectra was measured in quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer, and fluorescence

emission spectra were measured by a F-4500 FL spectrophotometer.

4a 4e 4h 4n 4x λ_{em} λ_{abs} λ_{em} λ_{abs} λ_{em} λ_{abs} λ_{abs} λ_{em} λ_{abs} λ_{em} Solvent $\Phi_{\rm F}$ $\Phi_{\rm F}$ $\Phi_{\rm F}$ $\Phi_{\rm F}$ $\Phi_{\rm F}$ (nm) THF 361 447 0.047 357 0.061 359 0.136 0.143 370 0.209 446 446 372 466 470 MeCN 357 451 0.014 352 445 0.011 356 450 0.066 368 475 0.080 365 484 0.115 DMF 362 452 0.047 358 450 0.033 360 453 0.136 372 479 0.155 368 489 0.172 DMSO 363 454 0.034 359 451 0.106 360 454 0.055 374 0.160 370 494 488 0.137 EtOH 362 454 0.022 358 451 0.020 359 455 0.061 489 0.121 370 495 373 0.128 Solid 441 490 0.486 446 476 0.168 435 486 458 514 472 _ 512 0.439

Table S2. UV, FL and fluorescence quantum yield in different solutions.^{a,b}

^{*a*} UV and FL spectra data were measured at 0.05 mM solution in different solvents. ^{*b*} The quantum yield was calculated using quinine sulfspecate as the standard (in 0.1 M H_2SO_4) at 360 nm in different solvents.

4. References

- 1 C. E. Song, D. Jung, S. Y. Choung, E. J. Roh and S. Lee, Angew. Chem. Int. Ed., 2004, 43, 6183-6185.
- 2 W. H. Melhuish, J. Phys. Chem., 1961, 65, 229-235.

wxj-85-D-13C-11571_000001r

WXJ-79-1H,11140_000001r

F77.36 F77.05 ~76.73

83.92

-21.75

24

Figure S17. ¹³C NMR spectrum of compound 4a

-159.87 -156.41 -152.97

168

192

184 176

Figure S19. ¹³C NMR spectrum of compound 4b

WXJ-138-1H,1430_000001r

Figure S21. ¹³C NMR spectrum of compound 4c

WXJ-202-1H,770_000001r

Figure S23. ¹³C NMR spectrum of compound 4d

WXJ-203-1H,3060_000001r

Figure S25. ¹³C NMR spectrum of compound 4e

WXJ-200-1H,2930_000001r

Figure S27. ¹³C NMR spectrum of compound 4f

Figure S28. ¹⁹F NMR spectrum of compound 4f

Figure S29. ¹H NMR spectrum of compound 4g

Figure S31. ¹H NMR spectrum of compound 4h

WXJ-237-13C,4931_000001r

Figure S33. ¹⁹F NMR spectrum of compound 4h

WXJ-146-1H,520_000001r

WXJ-146-13C,521_000001r

Figure S35. ¹³C NMR spectrum of compound 4i

WXJ-254-1H,14170_000001r

Figure S37. ¹³C NMR spectrum of compound 4j

WXJ-246-13C,5701_000001r

Figure S39. ¹³C NMR spectrum of compound 4k

Figure S41. ¹H NMR spectrum of compound 4I

WXJ-245-13C,5691_000001r

Figure S43. ¹H NMR spectrum of compound 4m

Figure S45. ¹H NMR spectrum of compound 4n

WXJ-232-13C,4911_000001r

Figure S46. ¹³C NMR spectrum of compound 4n

S27

WXJ-154-13C,1221_000001r

Figure S48. ¹³C NMR spectrum of compound 40

WXJ-154-19F,1222_000001r

Figure S49. ¹⁹F NMR spectrum of compound 40

Figure S51. ¹³C NMR spectrum of compound 4p

Figure S53. ¹³C NMR spectrum of compound 4q

Figure S54. ¹⁹F NMR spectrum of compound 4q

Figure S55. ¹H NMR spectrum of compound 4r

WXJ-233-13C,4921_000001r

Figure S56. ¹³C NMR spectrum of compound 4r

Figure S57. ¹H NMR spectrum of compound 4s

WXJ-161-13C,1671_000001r

Figure S58. ¹³C NMR spectrum of compound 4s

WXJ-161-19F,1672_000001r

Figure S59. ¹⁹F NMR spectrum of compound 4s

WXJ-263-1H,6750_000001r

Figure S61. ¹³C NMR spectrum of compound 4t

Figure S62. ¹⁹F NMR spectrum of compound 4t

Figure S63. ¹H NMR spectrum of compound 4u

WXJ-259-19F,6612_000001r

Figure S65. ¹⁹F NMR spectrum of compound 4u

WXJ-258-1H,14520_000001r

Figure S67. ¹³C NMR spectrum of compound 4v

Figure S69. ¹H NMR spectrum of compound 4w

Figure S71. ¹H NMR spectrum of compound 4x

Figure S72. ¹³C NMR spectrum of compound 4x

WXJ-262-19F,6741_000001r

Figure S73. ¹⁹F NMR spectrum of compound 4x

WXJ-261-1H,6730_000001r

Figure S75. ¹³C NMR spectrum of compound 4y

6. X-ray data

1) Structure determination of 4a

The structure of **4a** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane (V/V = 1/1). Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1881743.

Identification code	201811433
Empirical formula	$C_{24}H_{16}O_2$
Formula weight	336.37
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	29.831(4)
b/Å	11.1480(6)
c/Å	14.9443(19)
$\alpha/^{\circ}$	90
β/°	133.61(2)
γ/°	90
Volume/Å ³	3598.1(11)
Ζ	8
$\rho_{calc}g/cm^3$	1.242
μ/mm^{-1}	0.617
F(000)	1408.0
Crystal size/mm ³	$0.2\times0.16\times0.14$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.188 to 134.124
Index ranges	$-35 \le h \le 27, -8 \le k \le 13, -16 \le l \le 17$
Reflections collected	6687
Independent reflections	3221 [$R_{int} = 0.0226, R_{sigma} = 0.0294$]
Data/restraints/parameters	3221/0/237
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0480, wR_2 = 0.1334$
Final R indexes [all data]	$R_1 = 0.0656, wR_2 = 0.1501$
Largest diff. peak/hole / e Å-3	0.19/-0.19

 Table S3. Crystal data and structure refinement for 4a.

2) Structure determination of 4e

The structure of **4e** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane (V/V = 1/1). Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1966836.

Table S4. Crystal data and structure refinement for 4e.

Identification code	201911284
Empirical formula	$C_{23}H_{14}O_2$
Formula weight	322.34
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.9195(8)
b/Å	11.7513(7)
c/Å	14.2060(6)
$\alpha/^{\circ}$	87.690(5)
β/°	77.763(5)
γ/°	71.943(6)
Volume/Å ³	1693.11(19)
Ζ	4
pcalcg/cm ³	1.265
μ/mm ⁻¹	0.634
F(000)	672.0
Crystal size/mm ³	$0.16\times0.12\times0.1$
Radiation	CuK α (λ = 1.54184)
2Θ range for data collection/°	7.916 to 134.158
Index ranges	-13 \leq h \leq 13, -14 \leq k \leq 13, -12 \leq l \leq 16
Reflections collected	11792
Independent reflections	5950 [$R_{int} = 0.0230, R_{sigma} = 0.0328$]
Data/restraints/parameters	5950/0/452
Goodness-of-fit on F ²	1.018
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0473, wR_2 = 0.1252$
	S44

Final R indexes [all data]	$R_1 = 0.0637, wR_2 = 0.1428$
Largest diff. peak/hole / e Å-3	0.20/-0.16

3) Structure determination of 4h

The structure of **4h** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane (V/V = 1/1). Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1966837.

Crystal system	monochine
Space group	$P2_1/c$
a/Å	11.8769(8)
b/Å	11.8650(6)
c/Å	14.2912(11)
α/°	90
β/°	110.026(8)
γ/°	90
Volume/Å ³	1892.2(2)
Ζ	4
pcalcg/cm ³	1.370
µ/mm ⁻¹	0.902
F(000)	800.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.1$

Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.924 to 134.126
Index ranges	$\text{-}14 \leq h \leq 13, \text{-}14 \leq k \leq 10, \text{-}17 \leq l \leq 16$
Reflections collected	7164
Independent reflections	3371 [$R_{int} = 0.0234$, $R_{sigma} = 0.0304$]
Data/restraints/parameters	3371/67/273
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0605, wR_2 = 0.1653$
Final R indexes [all data]	$R_1 = 0.0800, wR_2 = 0.1862$
Largest diff. peak/hole / e Å-3	0.33/-0.44

4) Structure determination of 4n

The structure of **4n** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane (V/V = 1/1). Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1966838.

β/°	90
γ/°	90
Volume/Å ³	3818.78(14)
Ζ	8
pcalcg/cm ³	1.275
μ/mm^{-1}	0.664
F(000)	1536.0
Crystal size/mm ³	$0.1\times0.09\times0.08$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ ^c	8.038 to 134.152
Index ranges	$-17 \le h \le 26, -15 \le k \le 14, -14 \le l \le 16$
Reflections collected	15382
Independent reflections	$6179 [R_{int} = 0.0275, R_{sigma} = 0.0319]$
Data/restraints/parameters	6179/1/510
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.1094$
Final R indexes [all data]	$R_1 = 0.0521, wR_2 = 0.1193$
Largest diff. peak/hole / e Å-3	0.18/-0.13
Flack parameter	0.2(3)

5) Structure determination of 4x

The structure of 4x was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane (V/V = 1/1). Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1966843.

Identification code 201911292

Empirical formula	$C_{24}H_{15}FO_3$
Formula weight	370.36
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	21.9897(6)
b/Å	12.2777(3)
c/Å	13.5508(4)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3658.47(17)
Ζ	8
pcalcg/cm ³	1.345
μ/mm^{-1}	0.782
F(000)	1536.0
Crystal size/mm ³	$0.16 \times 0.13 \times 0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.2 to 134.674
Index ranges	$-26 \le h \le 26, -13 \le k \le 14, -16 \le l \le 14$
	11
Reflections collected	13127
Independent reflections	$4929 [R_{int} = 0.0319, R_{sigma} = 0.0371]$
Data/restraints/parameters	4929/1/508
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0421, wR_2 = 0.1018$
Final R indexes [all data]	$R_1 = 0.0573, wR_2 = 0.1161$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.15
Flack parameter	-0.15(18)