Supporting Information

Visible light induced 3-position-selective addition ofarylpropiolic acids with ethers via $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H functionalization

Zi-juan Wan, Xiao-feng Yuan, Jun Luo*

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R.
China
Corresponding author. E-mail: luojun@njust.edu.cn

1. General information s1
2. General methods for preparation of arylcarboxylic acids $(1 b-1 o)^{1}$ s1
3. Photoredox reaction of arylpropiolic acids with ethers s1
4. Transformation of Compound 3a s2
5. Characterization data for the products s4
6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds s10

1. General information

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker advance III (500 MHz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker advance III (126 MHz). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to the corresponding residual solvent signals $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} 7.26 \mathrm{ppm} ; \delta_{\mathrm{C}} 77.16 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shifts, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz) and integration. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was performed using a ThermoFisher Q-Exactive instrument. Unless otherwise noted, all reagents were obtained commercially and used without further purification. Purification of the reaction products was carried out by flash column chromatography using 200-300 mesh silica gel. Thin layer chromatography (TLC) was visualized by exposure to UV light (254 nm). Reactions were performed under an atmosphere of N_{2} using glassware that was dried under vacuum.

2. General methods for preparation of arylcarboxylic acids $(1 b-10)^{1}$

To a 100 mL of round-bottomed flask were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(577.8 \mathrm{mg}, 5 \mathrm{~mol} \%)$, aryl iodide ($10.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{DBU}(3.040 \mathrm{~g}, 20 \mathrm{mmol}, 2.0$ equiv.) and DMSO $(15 \mathrm{~mL})$. Then the solution of propiolic acid ($771 \mathrm{mg}, 11 \mathrm{mmol}, 1.1$ equiv.) in DMSO (5 mL) was added dropwise. The flask was put into a preheated oil bath $\left(35^{\circ} \mathrm{C}\right)$. After stirring for 10 h , the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaHCO_{3} solution. The aqueous layer was separated, acidified to $\mathrm{pH}=2.0$ by cold $\mathrm{HCl}(1 \mathrm{~N})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=2: 1$ with $\operatorname{HOAc}(1 \%, \mathrm{v} / \mathrm{v}))$ to give $\mathbf{1 b} \mathbf{- 1 0}$.

3. Photoredox reaction of arylpropiolic acids with ethers

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with arylpropiolic acid ($0.25 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{Ir}(\mathrm{bpy})_{4} \mathrm{Cl}_{2}(6 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.02$ equiv.), TBHP ($0.1 \mathrm{~mL}, 0.5 \mathrm{mmol}, 2$ equiv., 5.5 M in decane) and ether (3 mL). The tube was sealed with a septum, evacuated, and
backfilled with nitrogen three times. The mixture was stirred at room temperature for 12 h with an 18 W blue LED light. Then 0.1 mL DBU was added and stirred at room temperature for 30 min . The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaHCO_{3} solution. The aqueous layer was separated, acidified to $\mathrm{pH}=2.0$ by cold $\mathrm{HCl}(1 \mathrm{~N})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by silica gel column chromatography or preparative TLC plate.

4. Transformation of Compound 3a

4.1 Esterification of 3a

To a solution of $\mathbf{3 a}(218 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added dropwise $\mathrm{SOCl}_{2}(0.15$ $\mathrm{mL}, 2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Then the reaction was warmed to room temperature and stirred overnight. After the reaction was complete, the solvent was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography.

4.2 Amidation of 3a

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{3 a}$ ($109 \mathrm{mg}, 0.5$ $\mathrm{mmol})$. Then $\mathrm{SOCl}_{2}(0.5 \mathrm{~mL})$ was added slowly by a syringe. The mixture was stirred at room temperature for 4 h . After evaporation of the excess SOCl_{2}, the residue was added dropwise to 25% aq. NH_{3} solution $(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . Then the solution was extracted with ethyl acetate. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by silica gel column chromatography.

4.3 Reduction of ester 4

To a 25 mL round-bottom flask was added $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 5 \mathrm{mmol})$ and anhydrous THF (5 $\mathrm{mL})$, and the solution of $4(116 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added dropwise under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature, and the reaction was monitored by TLC. After the substrate 4 was disappeared, ice water $(0.19 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$, and then a 15% aqueous NaOH solution $(0.19 \mathrm{~mL})$ was added and the reaction mixture was stirred for 2 h , then 0.6 mL of water was added. After that, anhydrous sodium sulfate was added to remove water. After filtration over celite, the filtrate was concentrated under reduced pressure. The target product was obtained by silica gel column chromatography (PE/EtOAc).

4.4 Oxidation of allyl alcohol 6

The compound $6(61 \mathrm{mg}, \quad 0.3 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(100 \mathrm{mg}, \quad 1.2 \mathrm{mmol})$ were suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ prior to the addition of DMP ($190 \mathrm{mg}, 0.45 \mathrm{mmol}$). After 30 minutes the mixture was allowed to be warmed to room temperature and let stirring overnight. The reaction was quenched by diluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and pouring into saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure gave the crude product which was purified by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}$).

4.5 Esterification of 3a with diosgenin

3a
$+$

8

To a solution of $\mathbf{3 a}(83 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{8}(652 \mathrm{mg}, 0.24 \mathrm{mmol})$ and DMAP ($2 \mathrm{mg}, 0.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise a solution of DCC $(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Then the reaction was warmed to room temperature and stirred for another 2 h . The reaction was monitored by TLC to establish the consumption of starting material. After the reaction was complete, the solid was removed by filtration. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography to provide the desired product.

5. Characterization data for the products

3-phenyl-3-(tetrahydrofuran-2-yl)acrylic acid (3a)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.66(\mathrm{br}, 3 \mathrm{H}), 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 15 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, $4.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.81-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 6 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=172.29,170.92,143.67,135.16,134.46,134.20,133.95,131.50$, $129.25,129.00,128.72,128.51,128.30,128.25,79.78,75.27,69.07,68.84,31.89,31.42,26.77$, 25.64;

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}: 219.1016$, found: 219.1015 .

3-(tetrahydrofuran-2-yl)-3-(o-tolyl)acrylic acid (3b)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.91(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 12 \mathrm{H}), 7.07-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.78-$ $4.81(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.89-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H})$, $2.29(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.12(\mathrm{~m}, 5 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.53,143.20,137.00,135.88,135.73,135.33,134.46,133.88$, $131.33,130.32,129.83,129.03,128.58,128.39,128.23,125.74,125.70,79.48,76.04,69.01,68.90$, 32.22, 31.79, 26.42, 25.68, 20.11, 20.04 .

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$: 233.1172, found: 233.1174 .

3-(tetrahydrofuran-2-yl)-3-(m-tolyl)acrylic acid (3c)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.07(\mathrm{br}, 3 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.19(\mathrm{~m}$, $6 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}$, $2 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21$ $-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 6 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=170.57,143.75,138.23,137.82,135.14,134.48,134.09,133.94$, $131.24,129.94,129.79,129.48,129.12,128.41,128.22,126.24,125.75,80.01,75.51,69.05,68.84$, 31.84, 31.57, 26.67, 25.69, 21.49, 21.41.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$: 233.1172, found: 233.1173.

(Z)-3-(tetrahydrofuran-2-yl)-3-(p-tolyl)acrylic acid (Z-3d)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=11.05(\mathrm{br}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=168.56,143.40,139.47,131.53,129.43,129.41,129.34,76.33$, 68.99, 32.09, 26.14, 21.50.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}: 233.1172$, found: 233.1171 .

(E)-3-(tetrahydrofuran-2-yl)-3-(p-tolyl)acrylic acid (E-3d)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $4.70-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.03-1.92(\mathrm{~m}, 3 \mathrm{H})$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$: 233.1172, found: 233.1171.

3-(o-methoxyphenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3e)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=10.03(\mathrm{br}, 2.7 \mathrm{H}), 7.98(\mathrm{~s}, 1.7 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1.7), 7.32-7.30$ (m, 1H), $7.29-7.25(\mathrm{~m}, 1.7 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1.7 \mathrm{H}), 6.91-6.88$ $(\mathrm{m}, 3 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.84(\mathrm{~m}, 1.7 \mathrm{H}), 4.78-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1.7 \mathrm{H}), 4.06$ $-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 11 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}$, $5 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=172.19,170.35,157.79,156.98,140.39,133.79,131.37,130.75$, $130.16,130.11,129.84,124.50,123.58,120.37,120.21,110.72,110.59,80.07,75.99,68.97,68.81$, 55.56, 55.29, 31.96, 31.46, 26.62, 25.73.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 249.1121$, found: 249.1120 .

3-(m-methoxyphenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3f)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.83(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 3 \mathrm{H}), 4.94-4.91(\mathrm{~m}, 2 \mathrm{H})$, $4.75-4.72(\mathrm{~m} 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 8 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 6 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=171.92,170.11,159.58,159.43,143.20,136.62,135.87,134.69$, 133.20 , 131.69, 129.61, 129.33, 121.55, 121.31, 114.69, 114.59, 114.36, 113.81, 80.00, 77.42, 75.64, 69.08, 68.87, 55.39, 55.28, 31.83, 31.63, 26.62, 25.72.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 249.1121$, found: 249.1124 .

(Z)-3-(p-methoxyphenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (Z-3g)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.84(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.04-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=170.32,160.44,143.40,131.28,129.00,126.90,114.11,75.81$, 69.01, 55.46, 31.60, 26.56.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}$: 249.1121, found: 249.1122 .

(E)-3-(p-methoxyphenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (E-3g)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.70-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H})$, 2.03-1.92 (m, 3H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=171.02,160.00,135.20,131.01,130.84,127.37,113.80,80.90$, 68.88, 55.39, 31.88, 25.85.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}$: 249.1121, found: 249.1122 .

3-(o-fluorophenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3h)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.36(\mathrm{br}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.82-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=171.74,170.31,161.25,161.04,159.26,159.06,136.65,136.13$, $135.55,135.47,133.64,132.82,131.04,130.98,130.65,130.62,130.29,130.26,130.10,130.03$, $128.35,124.16,124.09,124.06,123.88,123.86,123.62,123.50,122.58,122.46,117.30,117.13$, $115.94,115.76,115.54,115.37,79.40,75.86,69.15,68.94,32.14,31.23,26.69,25.65$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}: 237.0921$, found: 237.0922 .

3-(m-fluorophenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3i)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.29(\mathrm{br}, 3 \mathrm{H}), 7.80(\mathrm{~s}, 1.8 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1.8 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 4.6 \mathrm{H}), 7.02-7.00(\mathrm{~m} \mathrm{1.8H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H})$,
$6.92(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.85(\mathrm{~m}, 1.8 \mathrm{H}), 4.77-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1.8 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H})$, $3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1.8 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 5 \mathrm{H}), 2.04-1.93$ (m, 5H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.64,170.44,163.60,163.58,161.64,141.97,137.54,136.64$, $136.58,135.44,132.80,132.65,132.64,130.20,130.14,129.80,129.74,125.04,125.01,124.54$, $124.51,116.10,115.99,115.93,115.82,115.56,115.39,115.21,115.04,79.56,75.27,69.16,68.92$, 31.92, 31.50, 26.73, 25.65.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}: 237.0921$, found: 237.0919 .

3-(p-fluorophenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3j)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.83(\mathrm{~s}, 1.7 \mathrm{H}), 7.37(\mathrm{dd}, J=8.7,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.5$, $5.4 \mathrm{~Hz}, 3.3 \mathrm{H}), 7.09(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3.3 \mathrm{H}), 7.00(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.73(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.88-$ $3.82(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.92,170.62,164.07,163.68,162.08,161.70,142.52,133.78$, $133.68,131.43,131.35,131.28,130.81,130.75,130.57,130.54,130.36,115.81,115.64,115.39$, $115.22,79.84,75.33,69.13,68.91,31.99,31.47,26.72,25.72$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}: 237.0921$, found: 239.0922 .

(Z)-3-(p-chlorophenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (Z-3k)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.78(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.88-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}$, 2 H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=168.32,141.92,133.30,131.97,131.86,130.81,130.71,69.13$, 32.02, 26.22.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}_{3}{ }^{+}: 253.0626$, found: 253.0624 .

(E)-3-(p-chlorophenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (E-3k)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, $4.70-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}$, $2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H})$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}_{3}{ }^{+}: 253.0626$, found: 253.0622 .

3-(p-(methoxycarbonyl)phenyl)-3-(tetrahydrofuran-2-yl)acrylic acid (3I)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=10.11(\mathrm{br}, 4 \mathrm{H}), 8.07-8.05(\mathrm{~m}, 7 \mathrm{H}), 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~s}$, $3.5 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 7 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.84(\mathrm{~m}, 3.5 \mathrm{H}), 4.79-$ $4.76(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 3.5 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 9 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.82(\mathrm{~m}$, 3H), $2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 10 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.85,166.90,166.63,142.05,140.16,139.10,136.15,133.13$, $132.31,132.23,130.36,129.76,129.55,129.13,128.73,128.66,79.56,75.51,69.19,68.97,52.42$, 52.25, 31.98, 31.73, 26.61, 25.71.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}^{+}$: 277.1071, found: 277.1072.

3-(tetrahydrofuran-2-yl)-3-(p-(trifluoromethyl)phenyl)acrylic acid (3m)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.87(\mathrm{~s}, 1.8 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3.6 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3.6 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1.8 \mathrm{H}), 4.77(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 2.8 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 1.8 \mathrm{H}), 2.33-2.26(\mathrm{~m}$, 1H), $2.19-2.11(\mathrm{~m}, 6 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.64,170.50,141.78,139.16,138.19,136.23,133.72,133.14$, $130.93,130.67,129.42,128.94,125.55,125.52,125.49,125.46,125.25,125.22,125.19,125.16$, $125.07,122.90,79.36,77.42,77.16,76.91,75.26,69.22,68.99,32.06,31.58,26.76,25.69$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}: 287.0890$, found: 287.0889 .

3-([1,1'-biphenyl]-4-yl)-3-(tetrahydrofuran-2-yl)acrylic acid (3n)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.92(\mathrm{~s}, 1.5 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 11 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 12 \mathrm{H}), 7.00$ $(\mathrm{s}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.77(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1.5 \mathrm{H}), 4.10-4.01(\mathrm{~m}$, $1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 1.5 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 5 \mathrm{H}), 2.06-$ $1.94(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.92,170.31,143.26,141.95,141.20,140.59,140.26,134.42$, $134.06,133.57,133.40,131.12,129.93,129.48,129.03,128.89,127.91,127.59,127.26,127.17$, $127.13,127.01,80.20,77.41,75.69,69.12,68.94,31.98,31.68,26.64,25.78$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}+:$ 295.1329, found: 295.1330 .

3-(tetrahydrofuran-2-yl)-3-(thiophen-2-yl)acrylic acid (3o)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.31(\mathrm{br}, 3 \mathrm{H}), 7.97(\mathrm{~s}, 2.4 \mathrm{H}), 7.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2.4 \mathrm{H}), 7.45(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2.4 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2.4 \mathrm{H}), 7.04-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 2.4 \mathrm{H}), 4.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 2.4 \mathrm{H}), 4.10-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 3.4 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 2.4 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 6 \mathrm{H}), 2.02-$ $1.92(\mathrm{~m}, 5 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=170.38,169.31,137.55,136.75,134.81,134.15,130.84,127.85$, $126.74,126.34,79.93,76.81,69.08,68.88,32.70,31.27,26.21,25.75$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}^{+}: 225.0580$, found: 225.0578 .

3-(naphthalen-1-yl)-3-(tetrahydrofuran-2-yl)acrylic acid (3p)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.34(\mathrm{~s}, 2 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 9 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 3 \mathrm{H})$, $2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 7 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=168.95,142.15,136.04,134.79,133.52,133.46,133.44,132.79$, $131.92,131.39,131.30,129.43,128.64,128.61,126.91,126.62,126.38,126.25,126.09,125.45$, $125.15,124.96,124.62,79.54,77.41,76.47,69.02,69.01,32.35,32.03,26.29,25.83$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$: 269.1172, found: 269.1172.

4-ethoxy-3-phenylpent-2-enoic acid (3q)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.91(\mathrm{~s}, 1.4 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 4.75-4.71(\mathrm{~m}, 1.4 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 2.4 \mathrm{H}), 3.41-$ $3.35(\mathrm{~m}, 1.4 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4.6 \mathrm{H}), 1.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=142.16,139.49,131.83,130.35,128.14,127.42,127.16,126.08$, $125.77,124.28,123.67,123.02,79.42,75.80,68.32,68.27,32.54,32.47,26.38,26.02$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$: 221.1172, found: 221.1173 .

4-butoxy-3-phenylhept-2-enoic acid (3r)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=10.84(\mathrm{br}, 3 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.35-7.28(\mathrm{~m}$, $12 \mathrm{H}), 6.84(\mathrm{~s}, 3 \mathrm{H}), 4.55-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.50(\mathrm{~m}$, $1 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 7 \mathrm{H}), 1.63-1.56$ $(\mathrm{m}, 7 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 7 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 12 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 25 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.39,168.89,143.29,136.27,134.84,134.44,133.21,131.26$, $129.29,129.15,128.95,128.76,128.72,128.45,82.54,77.42,76.38,70.05,69.42,37.48,36.93$, $31.96,31.57,26.58,19.52,19.30,19.21,19.13,14.02,14.00,13.86$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}: 277.1798$, found: 277.1797 .

4-(tert-butoxy)-3-phenylbut-2-enoic acid (3s)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=10.87(\mathrm{br} 2), 8.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1.6 \mathrm{H}), 7.60-7.57$ $(\mathrm{m}, 3.2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~s}$, $3.2 \mathrm{H}), 4.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 14.8 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=172.59,145.90$, 137.95, 135.27, 134.81, 133.87, 130.31, 130.09, $129.65,128.99,128.58,128.54,128.27,74.60,74.57,63.99,56.81,27.76,27.65$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}: 235.1329$, found: 235.1326 .

(Z)-4,5-dimethoxy-3-phenylpent-2-enoic acid (Z-3t)
${ }^{1} \mathrm{H}$ NMR $(\mathrm{CDCl} 3,500 \mathrm{MHz}): \delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}), 4.68-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.92-$ $3.88(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=137.26,134.55,130.77,129.00,128.98,128.51,81.99,75.92$, 59.55, 57.66.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 237.1121$, found: 237.1121 .

(E)-4,5-dimethoxy-3-phenylpent-2-enoic acid (E-3t)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.21$ $(\mathrm{m}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.97,145.58,134.18,129.63,129.44,128.93,128.83,77.24$, 74.60, 59.68, 57.67.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 237.1121$, found: 237.1121 .

methyl 3-phenyl-3-(tetrahydrofuran-2-yl)acrylate (4)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):=7.74(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}$, $3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 4 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=169.13,167.51,141.70,135.71,135.02,133.45,131.84,129.32$, $128.68,128.46,128.41,128.34,128.13,79.75,75.05,69.27,68.89,51.85,31.88,31.30,27.37$, 25.74 .

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}: 233,1172$, found: 233,1171.

3-phenyl-3-(tetrahydrofuran-2-yl)prop-2-en-1-ol (6)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):=7.36-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H})$, $6.71(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (s, 2H), $4.10(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 3 \mathrm{H}), 2.09-$ $1.95(\mathrm{~m}, 6 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=169.13,167.51,141.70,135.71,135.40,135.02,133.51,131.84$, $129.32,128.68,128.46,128.41,128.34,128.13,79.75,77.42,77.16,76.91,75.05,69.27,68.89$, 51.85, 31.88, 31.30, 27.37, 25.74

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}^{+}: 205.1223$, found:205.1226.

3-phenyl-3-(tetrahydrofuran-2-yl)acrylamide (5)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):=7.82(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 5 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.37(\mathrm{~m}, 12 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.27(\mathrm{~m}, 14 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 5 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.97$ $(\mathrm{s}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.03(\mathrm{~m}, 5 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H})$, 3.75 (m, 6H), $2.24-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 25 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=171.29,169.98$, 139.59, 135.23, 134.05, 131.93, 129.91, 128.95, 128.67, 128.60, 128.51, 128.43, 128.25, 127.44, 81.36, 77.41, 77.16, 76.90, 75.71, 68.76, 68.41, 31.19, 31.09, 26.04.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}: 218.1176$, found: 218.1177.

(Z)-3-phenyl-3-(tetrahydrofuran-2-yl)acrylaldehyde (Z-7)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.88(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.31(\mathrm{~m}$, 2H), $4.82(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=137.26,134.55,130.77,129.00,128.98,128.51,81.99,75.92$, 59.55, 57.66.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}$: 203.1067, found: 203.1066.

(E)-3-phenyl-3-(tetrahydrofuran-2-yl)acrylaldehyde (E-7)
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.64(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=192.51,143.81,142.55,134.09,130.15,129.27,128.58,76.38$, 68.64, 32.86, 25.89.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}^{+}$: 203.1067, found: 203.1066 .

(4S,6aR,6bS,8aS,8bR,9S,11aR,12aS,12bS)-5',6a,8a,9-tetramethyl-
1,4,5,6,6a,6b,7,8,8a,8b,9,11,11a,12,12a,12b-hexadecahydro-3H-spiro[pentaleno[2,1-
a]phenanthrene-10,2'-[1,3]dioxan]-4-yl 3-phenyl-3-(tetrahydrofuran-2-yl)acrylate (9)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~m}$, $3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m} 2 \mathrm{H}), 4.44$ - 4.39 (m, 2H), $4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.38$ $(\mathrm{m}, 2 \mathrm{H}), 2.71 \mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 5 \mathrm{H}), 2.05-1.89$ $(\mathrm{m}, 13 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 10 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 19 \mathrm{H}), 1.45(\mathrm{~m}, 8 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 6 \mathrm{H})$, $1.24-1.11(\mathrm{~m}, 9 \mathrm{H}), 0.97(\mathrm{~m}, 8 \mathrm{H}), 0.84-0.76(\mathrm{~m}, 11 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.94,166.45,154.56,141.30,139.75,139.63,135.07,134.81$, $129.27,128.93,128.77,128.53,128.49,128.36,128.35,128.12,128.01,122.54,109.36,80.89,80.87$, $79.64,76.55,75.05,74.49,74.34,69.47,69.20,68.80,66.91,62.14,56.50,50.01,41.68,40.33,40.31$, $39.80,38.26,37.10,36.85,33.20,32.77,32.13,31.92,31.84,31.48,31.46,31.25,30.37,29.15,28.88$, $27.94,27.38,26.73,26.29,26.16,25.71,25.49,25.46,24.73,24.47,20.90,19.49,17.24,16.39,14.63$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{O}_{5}{ }^{+}$: 615.4044, found: 615.4047.

2,2,6,6-tetramethyl-1-((tetrahydrofuran-2-yl)oxy)piperidine (10)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):=5.45-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.86$ $-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.16-0.97(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):=109.76,66.78,60.27,58.77,40.25,39.84,34.04,33.49,31.37$, 24.04, 20.60, 20.21, 17.40.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$: 228.1958, found: 228.1959.
Reference

1. Pan, S.; Li, H.; Huang, Y.; Xu, X. H.; Qing, F. L. Org Lett, 2017, 19, 3247

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

3a

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

3b

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $Z-3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $Z-3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $E-3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$3 e$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $Z-3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $Z-3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $E-3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $E-3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
8.5t8w

$3 i$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

 $\xrightarrow{4} \boldsymbol{y}$

4.3j

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{j}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $\boldsymbol{Z}-3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $Z-3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $E-3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $31\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $31\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

3 m

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{n}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

3n

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{n}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $30\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $30\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{p}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{p}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{r}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{r}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $Z-3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $Z-3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $E-3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $E-3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of the product of $4\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $4\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

5

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $5\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $6\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

6

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $6\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $Z-7\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $Z-7\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $E-7\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $E-7\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $9\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $9\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of the product of $10\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of the product of $10\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$
章
琵 单 辛辛

[^1]
[^0]:

[^1]:

