Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for

Fluorometric sensing of hydroxylamine in an aqueous medium utilizing a diphenyl imidazole-based probe

Punam Rana,^a Lipsarani Panda, ^a Narayan Murmu,^a Bhawani Prasad Bag^b and Satya Narayan Sahu*^a

^a School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India Email: snsahu.chem@gmail.com; snsahu@suniv.ac.in

^b Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India

1. Materials and preparation of the test samples

All the solvents and reagents (analytical grade and spectroscopic grade) were obtained from Merck (India), Spectrochem Pvt. Limited (India) and Sigma-Aldrich and were used without further purification. A 1.0 mM **DIB** stock solution was prepared in UV-grade dimethyl sulphoxide (DMSO) and subsequently diluted to 50 µM in 5% DMSO phosphate buffer solution at pH 7.4 for various photophysical studies. Stock solutions of metal ions such as Ag⁺, Ba²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Cr²⁺, Fe²⁺, Hg²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Pb²⁺, Pd²⁺, Zn²⁺ were prepared at 1.0 mM concentration in Millipore water from their respective perchlorate, nitrate or chlorides salts for cation interaction studies. Similarly for anionic interaction studies, 1.0 mM stock solutions of anions such as F⁻, Cl⁻, Br⁻, I⁻, H₂PO4⁻, HSO4⁻,OH⁻, AcO⁻ (as tetrabutyl ammonium salts), CN^{-} (as KCN salt) and S^{2-} (as Na₂S salt) were prepared in Millipore water. The interaction of neutral amines such as urea, thiourea, aniline, triethylamine, ammonium hydroxide, hydroxyl amine, ethylene diamine, piperidine, hydrazine hydrate and methyl amine were studied by preparing stock solutions in the range of 10-100 mM concentration in Millipore water. The aggregation induced emission (AIE) characteristics of DIB (50 µM) was studied in UV-grade DMSO with varying water fractions. The solvatofluorism behaviour of DIB (50 µM) was examined with various solvents such as benzene, toluene, tetrahydrofuran, dioxane, acetone, methanol, acetonitrile and DMSO.

2. General methods

¹H NMR was recorded on an Avance III-400 MHz Bruker spectrometer. Chemical shifts are reported in parts per million from tetramethylsilane with the solvent (DMSO-d₆: 2.5 ppm) resonance as the internal standard. Data are reported as follows: chemical shifts, multiplicity (s singlet, (d=doublet, t=triplet, m=multiplet), coupling constant (Hz). ¹³C NMR (100 MHz) spectra were recorded on an Avance III–400 MHz Bruker spectrometer in proton decoupling mode. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (DMSO-d₆: 39.51 ppm). Fluorescence emission spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. Hydrodynamic diameters were measured using Malvern Zetasizer instrument. Mass spectrum was measured on Xevo G2S QTof Mass analyser (Waters). FTIR spectra were recorded on Eco-ATR, Alpha, Bruker Optik GmbH, Ettlingen, Germany. pH readings were measured on UTECH CON-700 digital pH meter. Elemental analysis was carried out by using Elementar Vario EL III CHNS. Chromatographic purification

was done using 60–120 mesh silica gels (Merck). For reaction monitoring, manually coated silica gel-60 thin layer chromatography (TLC) glass plates were used.

3. Synthesis of the probe DIB

The probe 4-(4,5-diphenyl-1*H*-imidazol-2-yl)benzaldehyde (**DIB**) was synthesized through a straightforward protocol as depicted in Scheme S1. 0.2 gm (0.95 mmol) of benzil and 0.1276 gm (0.95 mmol) of terephthaldehyde were taken in a 100 ml round bottom flask and dissolved in 30 ml of glacial acetic acid. Then the mixture was kept at room temperature (27 °C) for 2 hours under continuous stirring. After two hours, ammonium acetate (0.5 gm) was added and the mixture was further refluxed at 120 °C on an oil bath till completion of the reaction as monitored by thin layer chromatography. After end of the starting materials, the reaction mixture was poured into ice cold water and the precipitates obtained were washed with water and dried. Then the residues were purified by silica gel column chromatography with hexane/ethylacetate (95:5, v/v) as eluent to afford the probe **DIB** as yellow colour solid (154 mg, 47%) MP: 237-239 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 13.03 (1H, s, NH), 10.03 (1H, s, CHO), 8.30 (2H, d, *J* = 8 Hz, Ar-H), 8.01 (2H, d, J = 8 Hz, Ar-H), 7.58-7.23 (m, 10H, Ar-H). ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm) 193.0, 144.7, 138.6, 135.9, 135.8, 135.2, 131.1, 130.6, 130.0, 129.2, 129.0, 128.8, 128.6, 127.6, 127.3, 125.9. FTIR (KBr, v cm⁻¹) 3355 (-NH str.), 1695 (-C=O str), 1442 (C=C str), 1203, 1164, 1073, 969, 833, 775, 697. ESI-MS m/z: calcd for C₂₂H₁₆N₂O [M+H]⁺: 325.38; found 325.33. Elemental analysis: C₂₂H₁₆N₂O: calcd. C 81.46, H 4.97, N 8.64; found: C 81.35, H 5.07, N 8.53%.

Scheme S1. Synthesis protocol for probe DIB

Fig. S1. ¹H NMR spectrum of **DIB in** DMSO- d_6

Fig. S2. ¹³C NMR spectrum of **DIB in** DMSO- d_6

Fig. S4. ESI mass spectrum of DIB

Fig. S5. Visual photograph of **DIB** (50 μ M) under UV light at 365 nm in (i) benzene (ii) toluene (iii) tetrahydrofuran (THF) (iv) dioxane (v) acetone (vi) methanol (vii) acetonitrile (viii) dimethyl sulphoxide (DMSO) solvent medium.

Fig. S6. Visual observation of probe **DIB** (50 μ M) at various DMSO-Water fractions under UV-lamp at 365 nm.

Fig. S7. Visual observation of interaction of **DIB** (50 μ M) in 5% DMSO phosphate buffer solution at pH 7.4 with various metal ions and anions (20 equiv.) under UV light of 365 nm.

Fig. S8. Fluorescence intensity of **DIB** (50 μM) in absence (blue square) and in presence (purple circle) of HA (20 equiv.) at 465 nm within pH 1-13.

Fig. S9. Fluorescence response time of **DIB** (50 μ M) in 5% DMSO phosphate buffer solution at pH 7.4 in presence of 20 equiv. of hydroxyl amine (HA) and hydrazine hydrate (HH) studied upto 120 minutes.

Fig. S10. Fluorescence colour changes for **DIB** in presence of 0.0 to 20.0 equiv. of HA after 2 hrs under UV-light at 365 nm in 5% DMSO phosphate buffer solution at pH 7.4.

Fig. S11. Fluorescence intensity of DIB (50 μ M) in 5% DMSO phosphate buffer solution at pH 7.4 in presence various concentration of HA.

Fig. S12. Overlay FTIR spectra of DIB and Product of DIB+HA.

Fig. S13. ESI-MS of (a) hydrazone product (C) and (b) oxime product (D).

Fig. S14. Size distribution by DLS of **DIB** (50 μ M, Top Fig.) and **DIB**+HH (50 μ M each, Bottom Fig.) after an incubation period of 5 hr in 5% DMSO in Water.

Atomic coordinates of optimized structures

	Coordinates of DIB probe					Coordinates of Intermediate A				
No	Atom	Х-	у-	Z-	N	0	Atom	Х-	у-	Z-
1	Ν	-1.896	2.333	0	1		Ν	-0.146	0.812	0
2	С	-2.753	3.447	0.064	2		С	-1.016	1.921	0.158
3	Ν	-2.027	4.565	0.139	3		Ν	-0.29	3.051	0.283
4	С	-0.675	4.185	0.112	4		С	1.038	2.709	0.206
5	С	-0.576	2.763	0.067	5		С	1.171	1.263	0.089
6	Н	-2.189	1.372	0.076	6		Н	-0.41	-0.149	0.163
7	С	0.331	5.211	0.023	7		С	2.051	3.737	0.12
8	С	-0.033	6.546	0.379	8		С	1.757	5.038	0.614
9	С	1.655	4.976	-0.457	9		С	3.311	3.52	-0.507
10	С	0.896	7.576	0.309	1	0	С	2.694	6.061	0.521
11	Н	-1.048	6.722	0.712	1	1	Н	0.788	5.207	1.069
12	С	2.572	6.017	-0.533	12	2	С	4.239	4.558	-0.607
13	Н	1.935	3.988	-0.799	1.	3	Н	3.534	2.556	-0.948
14	С	2.205	7.32	-0.143	14	4	С	3.944	5.827	-0.087
15	Н	0.611	8.581	0.598	1:	5	Н	2.461	7.044	0.917
16	Н	3.571	5.828	-0.914	1	6	Н	5.19	4.381	-1.1
17	Н	2.927	8.128	-0.205	1	7	Н	4.671	6.629	-0.162
18	С	0.522	1.818	0.131	1	8	С	2.275	0.359	0.152
19	С	0.449	0.587	-0.573	1	9	С	2.161	-0.96	-0.408
20	С	1.658	2.059	0.948	20	0	С	3.487	0.681	0.851
21	С	1.479	-0.35	-0.479	2	1	С	3.208	-1.869	-0.307
22	Н	-0.397	0.391	-1.226	22	2	Н	1.274	-1.227	-0.975
23	С	2.682	1.116	1.036	2	3	С	4.521	-0.244	0.943
24	Н	1.707	2.967	1.538	24	4	Н	3.572	1.634	1.36
25	С	2.601	-0.091	0.323	2	5	С	4.401	-1.523	0.363
26	Н	1.413	-1.278	-1.038	2	6	Н	3.109	-2.852	-0.758
27	Н	3.537	1.312	1.676	2	7	Н	5.423	0.018	1.488
28	Н	3.399	-0.823	0.398	2	8	Н	5.211	-2.241	0.444
29	С	-4.204	3.347	0.06	2	9	С	-2.441	1.819	0.153
30	С	-4.865	2.093	-0.045	3	0	С	-3.104	0.576	-0.085
31	С	-4.992	4.521	0.173	3	1	С	-3.241	2.97	0.403
32	С	-6.252	2.021	-0.033	32	2	С	-4.494	0.504	-0.064
33	Н	-4.3	1.168	-0.147	3.	3	Н	-2.534	-0.322	-0.305
34	С	-6.377	4.451	0.186	3-	4	С	-4.625	2.883	0.42
35	Н	-4.489	5.48	0.249	3.	5	Н	-2.743	3.917	0.58
36	С	-7.046	3.194	0.084	3	6	С	-5.281	1.644	0.186
37	Н	-6.746	1.056	-0.117	3	7	Н	-4.982	-0.45	-0.242
38	Н	-6.983	5.346	0.273	3	8	Н	-5.218	3.772	0.611
39	С	-8.496	3.11	0.096	3	9	С	-6.783	1.533	0.243
40	Н	-8.922	2.095	0.011	4	0	Н	-7.11	0.553	-0.135
41	0	-9.276	4.111	0.198	_ 4	1	0	-7.3	1.492	1.625
					42	2	Η	-7.051	2.322	2.086
					43	3	Ν	-7.411	2.641	-0.461
					4	4	Ν	-8.803	2.565	-0.725
					4.	5	Н	-9.11	1.672	-1.113
					4	6	Н	-9.35	2.844	0.08
					4	7	Н	-6.894	3.014	-1.247

	Coordin	_	Coordinates of Product C							
No	Atom	х-	y-	Z-	-	No	Atom	Х-	y-	Z-
1	Ν	-1.208	1.375	0	-	1	Ν	-3.438	2.646	0
2	С	-2.074	2.489	0.149		2	С	-4.197	1.462	-0.075
3	Ν	-1.342	3.617	0.268		3	Ν	-3.352	0.397	-0.135
4	С	-0.014	3.264	0.193		4	С	-2.069	0.881	-0.102
5	С	0.111	1.821	0.086		5	С	-2.083	2.321	-0.059
6	Н	-1.478	0.416	0.171		6	Н	-3.8	3.576	-0.144
7	С	1.001	4.289	0.105		7	С	-0.947	-0.047	-0.02
8	С	0.707	5.593	0.594		8	С	-1.092	-1.345	-0.567
9	С	2.261	4.069	-0.521		9	С	0.259	0.274	0.648
10	С	1.646	6.613	0.5		10	С	-0.056	-2.274	-0.479
11	H	-0.263	5.763	1.046		11	H	-2.027	-1.598	-1.054
12	С	3.191	5.105	-0.621		12	С	1.29	-0.664	0.743
13	H	2.483	3.104	-0.959		13	H	0.373	1.244	1.119
14	C	2 897	6 376	-0.105		14	C	1 143	-1 938	0 174
15	Ĥ	1 414	7 598	0.893		15	H	-0 178	-3 261	-0.913
16	Н	4 142	4 926	-1 113		16	Н	2 204	-0 406	1 269
17	Н	3 625	7 177	-0.181		17	Н	1 947	-2 663	0.245
18	C	1 211	0.909	0.146		18	C	-1.069	3 3 3 9	-0.133
19	C	1.088	-0 406	-0.417		19	C	-1 314	4 637	0.414
20	C	2 424	1 223	0.843		20	C	0.167	3 1 2 9	-0.813
21	C	2.121	-1 322	-0.321		21	C	-0.363	5 649	0.307
21	Н	0.197	-0.666	-0.982		21	Н	-2 229	4 822	0.971
22	C	3 4 5 4	0.000	0.902		23	C	1 108	4 15	-0.915
23	н	2 517	2 175	1 353		23	н	0.358	2 174	-1 29
25	C	3 3 2 5	-0.985	0.347		25	C	0.856	5 4 1 8	-0.355
25	Н	2 024	-2 303	-0 774		25	Н	-0 564	6 6 2 1	0 748
20	Н	4 359	0 548	1 474		20	Н	2 036	3 969	-1 448
27	Н	4 131	-1 707	0.425		27	Н	1 593	6 211	-0.44
20	II C	3 /00	2 301	0.425		20	II C	5.617	1.414	-0.44
30	C	-1 166	1 1/6	-0.075		30	C	-6.421	2 501	-0.075
31	C	-4.100	3 547	-0.075		31	C	-0.421 6 201	0.157	0.001
22	C	-4.290	1.076	0.391		22	C	-0.291	0.137 2.524	-0.221
32	С Ц	-3.555	0.245	-0.049		22	С Ц	-7.0	2.524	0.041
33	II C	-3.399	0.243 2.462	-0.291		24	II C	-3.95	0.006	0.198
24 25	U U	-3.08	5.405 4.405	0.410		24 25	U U	-7.07	0.090	-0.241
33 26	П	-5.790	4.495	0.333		33 26	П	-3.091	-0./41	-0.310
30 27		-0.54	2.221	0.190		30 27		-0.4/3	1.2/2	-0.114
3/ 20	П	-0.040	0.122	-0.22		3/ 20	П	-8.399	5.421 0.967	0.148
38 20	П	-0.27	4.557	0.394		38 20	П	-8.103	-0.80/	-0.355
39 40		-/.84	2.111 1.144	0.12		39 40		-9.905	1.1/8	-0.139
40	П	-8.18/	1.144	-0.12		40	H N	-10.546	0.18	-0.258
41	U	-8.5/8	2.143	1.019		41	IN N	-10.084	2.238	-0.026
42	H	-8.026	2.927	2.093		42	IN LL	-12.035	2.041	-0.063
43	IN LL	-8.45	5.225	-0.49		43	H	-12.453	1.121	-0.154
44	Н	-8.027	3.349	-1.41		44	Н	-12.61	2.858	0.038
45	0	-9.861	2.886	-0.806						
46	Н	-10.374	3.305	-0.085						

Coordinates of Product D								
No	Atom	Х-	у-	Z-				
1	Ν	-0.167	0.333	0				
2	С	0.594	-0.849	0.066				
3	Ν	-0.237	-1.909	0.132				
4	С	-1.537	-1.419	0.106				
5	С	-1.519	0.014	0.066				
6	Н	0.206	1.265	0.102				
7	С	-2.641	-2.351	0.022				
8	С	-2.427	-3.692	0.446				
9	С	-3.909	-2.009	-0.525				
10	С	-3.451	-4.631	0.372				
11	Н	-1.45	-3.955	0.832				
12	С	-4.924	-2.959	-0.607				
13	Н	-4.076	-1.014	-0.917				
14	С	-4.706	-4.271	-0.15				
15	Н	-3.277	-5.646	0.714				
16	Н	-5.881	-2.688	-1.039				
17	Н	-5.501	-5.008	-0.214				
18	С	-2.532	1.041	0.134				
19	С	-2.325	2.295	-0.506				
20	С	-3.721	0.867	0.896				
21	С	-3.275	3.311	-0.41				
22	Н	-1.44	2.446	-1.118				
23	С	-4.664	1.89	0.987				
24	Н	-3.874	-0.057	1.442				
25	С	-4.451	3.116	0.334				
26	Н	-3.106	4.254	-0.921				
27	Н	-5.558	1.742	1.583				
28	Н	-5.186	3.911	0.41				
29	С	2.031	-0.881	0.068				
30	С	2.815	0.302	-0.051				
31	С	2.712	-2.128	0.203				
32	С	4.198	0.254	-0.03				
33	Н	2.336	1.272	-0.175				
34	С	4.094	-2.177	0.226				
35	Н	2.125	-3.036	0.287				
36	С	4.886	-0.993	0.113				
37	Н	4.783	1.162	-0.125				
38	Н	4.597	-3.135	0.331				
39	С	6.321	-1.074	0.142				
40	Н	6.793	-2.05	0.249				
41	Ν	7.079	0.002	0.042				
42	0	8.496	-0.422	0.106				
43	Н	8.984	0.422	0.027				