Electronic Supplementary Information

Copper Catalyzed *N*-Arylation of 5-Aminopyrazoles: A Simple Route to Pyrazolo[3, 4-*b*]indoles

Arpita Chatterjee, Chudamani Murmu, and S. Peruncheralathan*

School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Jatni, Khurda – 752050, Odisha, India

Email: peru@niser.ac.in

Table of Content

Sl. No.	Contents	Page No.
1.	Table S1. Synthesis of 5-amino-4-(2-bromoaryl)pyrazoles 2	ESI-2
2.	Figure S1. ¹ H NMR spectra of 6a & 6a'	ESI-3
3.	Figure S2. ¹ H NMR spectra of 1a	ESI-3
4.	Figure S3. GCMS Chromatograph of controlled experiment	ESI-4
5.	Figure S4. Assignment of Dehalogenated products	ESI-5
6.	General information	ESI-5
7.	General procedure for the synthesis β -ketonitriles 3a-j	ESI-6
8.	General procedure for the synthesis of 5-amino-4 arylpyrazoles 2a-x	ESI-11
9.	Procedure for optimization of the <i>N</i> -arylation 5-amino-4-arylpyrazole 2a	ESI-23
10.	Figure S5 . Molecular structure of compound 4s at 30% probability of thermal ellipsoids	ESI-24
11.	¹ H, ¹³ C NMR, & ¹⁹ F Spectra of all compounds	ESI-24

Table S1. Synthesis of 5-amino-4-(2-bromoaryl)pyrazoles 2.ª

^alsolated yields

Figure S2. ¹H NMR spectra of 1a

7/22/2020 11:04:02 AM

Figure S3. GCMS Analysis of crude reaction mixture of 2z

Figure S4. Assignment of Dehalogenated products from controlled experiments

General Information

All reactions were performed by using a standard vial technique with a rubber septum. All solids were weighed in air. Dioxane, DMF, DMSO, Cs₂CO₃, K₂CO₃, and KO'Bu, PTSA were purchased from Aldrich, Acros, Merck, Spectrochem, or Alfa-Aesar and used as received. CuI, CuBr, CuCl, and Cu(OAc)₂:H₂O were purchased from Aldrich. Aryl hydrazines and 1,10-Phenanthroline were purchased from Spectrochem and Aldrich respectively. All other reagents were purchased from standard suppliers and used without further purification. Flash chromatography was performed using Merck Silica gel(230-400 mesh). Fractions were monitored by thin-layer chromatography on precoated silica gel 60F₂₅₄ plates (Merck & co.) and were

visualized by UV. NMR data were recorded on Bruker ARX 400 & 700 and Jeol 400 spectrometers. ¹H, ¹³C NMR, and ¹⁹F spectra were recorded in CDCl₃ and DMSO-d₆ referenced according to signals of deuterated solvents. ESI HR-MS measurements were performed on Bruker micro TOF-Q-II mass-spectro.

General Procedure for the Synthesis β -Ketonitriles 3a-j:¹

To a stirred solution of 2-bromobenzyl cyanide (1 eqiuv, 5 mmol) in EtOAc (20 mL) sodium metal (1.5 equiv) was added by portion at room temperature. When sodium metal was completely dissolved in the reaction mixture, then the reaction mixture was refluxed. The reaction was monitored by TLC. Then it was quenched with ice cooled water and followed by neutralization with 3N HCl. The reaction mixture was extracted with ethyl acetate. The combined organic layer was washed brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The crude was purified through column chromatography using ethyl acetate and hexane as eluent.

2-(2-Bomophenyl)-3-oxobutanenitrile (3a):² Reaction time: 3 h; Yield: 88% (1.04 g); Keto:enol tautomer(4:1); Orange color gel; $R_f = 0.15$ in 20% EtOAc in hexane; IR (KBr, v m^{Me} cm⁻¹): 3437, 2206, 1731, 1644, 1615, 1470, 1433, 1386, 1050, 1027, 755; ¹H NMR (400 MHz, CDCl₃, Keto isomer) δ 7.65 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6, 1H), 7.29 (t, J = 8.4, 1H), 5.27 (s, 1H) , 2.32(s, 3H); ¹³C NMR (100 MHz, CDCl₃, Keto isomer) δ 195.5, 133.5, 130.8, 130.14, 130.10, 128.5, 123.7, 115.4, 50.6, 27.8.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₀H₈BrNO: 237.9862 & 239.9842; Found: 237.9853 & 239.9866.

2-(2-Bromo-5-chlorophenyl)-3-oxobutanenitrile (3b): Reaction time: 3 h; Yield: 82% (1.11 g); Keto:enol tautomer(4:1); White color solid; $R_f = 0.13$ in 20% EtOAc in hexane; m.p = 125 °C; IR

(KBr, v cm⁻¹): 3431, 2205, 1645, 1457, 1339, 1270, 1096, 1019, 815; ¹H NMR (400 MHz, CDCl₃)

Keto isomer)
$$\delta$$
 7.58 (d, $J = 8.8$ Hz, 1H), 7.48 (s, 1H), 7.27 (d, $J = 8.8$ Hz, 1H),
^{CI} \longrightarrow ^{Me} 5.17 (s, 1H), 2.35 (s, 3H).; ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 194.4,
134.9, 134.6, 131.9, 131.2, 130.3, 121.8, 115.1, 50.4, 28.4.; HRMS (ESI –

TOF), m/z [M + H]⁺ Cal for C₁₀H₇BrClNO: 271.9472 & 273.945; Found: 271.9480 & 273.9457.

2-(2-Bromo-5-methylphenyl)-3-oxobutanenitrile (3d): Reaction time: 3 h; Yield: 81% (1.02 g);

Keto:enol tautomer(4.7:1); White color solid; $R_f = 0.16$ in 20% EtOAc in hexane; m.p = 121°C; IR (KBr, v cm⁻¹): 3437, 2204, 1732, 1646, 1506,1475, 1358, 1165,1025,813; ¹H NMR (400 MHz, CDCl₃, Keto isomer) δ 7.51 (d, J = 8 Hz, 1H), 7.09 (s, 1H), 7.1 (d, J = 8 Hz, 1H), 5.22 (s, 1H), 2.34 (s, 3H), 2.30 (s, 3H); ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 195.5, 139.2, 133.4, 132.0, 130.7, 129.9, 120.6, 115.8, 50.7, 28.1, 21.0; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₁H₁₀BrNO: 252.0019 & 253.9998; Found: 252.0042 & 254.0055. **2-(2-Bromo-4, 5-dimethoxyphenyl)-3-oxobutanenitrile (3f):** Reaction time: 3 h; Yield: 80% (1.19 g); Keto:enol tautomer(1.5:1); White color solid; $R_f = 0.17$ in 20% EtOAc in hexane; m.p = 115 °C; IR (KBr, v cm⁻¹): 3437, 2202, 1730, 1643, 1503, 1440, 1380, 1261, 1210, 1169, 1024, 860; ¹H NMR (400 MHz, CDCl₃, Keto isomer) δ 7.05 (s, 1H), 6.86 (s, 1H), 5.19 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, Keto isomer) δ 195.9, 150.4, 149.4, 121.7, 115.8, 115.7, 114.3, 111.5, 56.4, 56.3, 50.5, 27.9; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₂H₁₂BrNO₃: 298.0073 & 300.0053; Found: 298.0061 & 300.0041.

2-(2-Bromo-3, 4, 5-trimethoxyphenyl)-3-oxobutanenitrile (3g): Reaction time: 3 h; Yield: 80% (1.31 g); Keto:enol tautomer(10:1); White color solid; $R_f = 0.17$ in 20% EtOAc in hexane; m.p = 118 °C; IR (KBr, v cm⁻¹): 3437, 2940, 2206, 1730, 1642, 1484, 1428, 1392, 1338, 1246, 1106, 1005, 926; ¹H NMR (400 MHz,

CDCl₃, Keto isomer) δ 6.79 (s, 1H), 5.29 (s, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.87 (s, 3H), 2.31 (s, 3H); ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 195.5, 153.8, 151.7, 144.0, 125.3, 115.8, 111.1,

108.3, 61.3, 61.3, 56.5, 50.8, 28.1.; HRMS (ESI – TOF), m /z [M + H]⁺ Cal for C₁₃H₁₄BrNO₄: 349.9998 & 351.9979; Found: 349.9970 & 351.9949.

2-(2-Bromo-4-chlorophenyl)-3-oxobutanenitrile (3h): Reaction time: 3 h; Yield: 78% (1.06 g);

Keto:enol tautomer(3:1); White color solid; $R_f = 0.13$ in 20% EtOAc in hexane; m.p = 137 °C; IR (KBr, v cm⁻¹): 3406, 2227, 1603, 1517, 1392, 1370, 1059, 1022, 845, 757; ¹H NMR (400 MHz, CDCl₃, Keto isomer) δ 7.67 (s, 1H), 7.45-7.40 (m, 2H), 5.19 (s, 1H), 2.36 (s, 3H).; ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 194.6, 136.4, 133.3, 131.0, 129.1, 128.9, 124.4, 115.3, 50.1, 28.3.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₀H₇BrClNO: 271.9472 & 273.9451; Found: 271.9491 & 273.9495.

2-(2-Bromo-4-fluorophenyl)-3-oxobutanenitrile (3i): Reaction time: 3 h; Yield: 75% (0.960 g); Keto:enol tautomer(10:1); White color solid; $R_f = 0.13$ in 20% EtOAc in hexane; m.p = 136 °C; IR (KBr, v cm⁻¹): 3421, 2220, 1634, 1573, 1465, 1332, 1280, 1259, 1195, 959, 876; 1H NMR (400 MHz, CDCl₃, Keto isomer) δ 7.49 (dd, J = 8.4, 5.6 Hz, 1H), 7.40 (dd, J = 7.9, 2.4 Hz, 1H), 7.15 (td, J = 8, 2.4 Hz, 1H), 5.18 (s, 1H), 2.36 (s, 3H); ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 194.9, 163.4 (d, J = 252), 131.4 (d, J = 8.75), 126.5 (d, J = 3.5), 124.4 (d, J = 10.5), 121.2 (d, J = 24.5), 116.2 (d, J = 21), 115.5, 49.9, 28.2; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₀H₇BrFNO: 255.9768 & 257.9748; Found: 255.9747 & 257.9753.

2-(2-Bromo-3,5-di-tert-butylphenyl)-3-oxobutanenitrile (3j): Reaction time : 3 h; Yield: 80% (1.4 g); Keto:enol tautomer(10:1); white color solid; $R_f = 0.26$ in 20% EtOAc in hexane; m.p = 128 °C; IR (KBr, v cm⁻¹): 3441, 2966, 1733, 1652, 1634, 1539, 1363, 1265, 1017, 739; ¹H NMR (700 MHz, CDCl₃, keto isomer) δ 7.55

(d, *J* = 2.1 Hz, 1H), 7.33 (d, *J* = 2.8 Hz, 1H), 5.46 (s, 1H), 2.30 (s, 3H), 1.54 (s, 9H), 1.31 (s, 9H);

¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 196.19, 151.26, 149.29, 131.96, 126.79, 125.51, 121.53, 116.31, 52.44, 37.84, 35.10, 31.27, 30.16, 28.17.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₈H₂₄BrNO: 350.1095 & 352.1075; Found: 350.1114 & 352.1094.

2-(2-Iodophenyl)-3-oxobutanenitrile (3k): Reaction time: 3 h ; Yield: 52% (0.741 g); Keto:enol tautomer(2:1); Orange viscous liquid ; $R_f = 0.13$ in 20% EtOAc in hexane; IR (KBr, v cm⁻¹): 2920, 2205, 1730, 1646, 1465, 1277, 1014, 918, 757; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 1H), 7.39-7.46 (m, 2H), 7.10-7.13 (m,1H) 5.23 (s, 1H), 2.30 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃, Keto isomer) δ 195.6, 140.5, 133.6, 132.0, 131.0, 129.6, 129.4, 115.7, 55.1, 28.4.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₀H₈INO: 285.9723; Found: 285.9704.

2-Phenyl-3-oxobutanenitrile (31); Reaction time: 3h ; Yield: 65% (0.517 g); Keto:enol tautomer(4.2:1); Pale yellow colour solid ; $R_f = 0.1$ in 20% EtOAc in hexane; m.p = 112 °C; IR (KBr, v cm⁻¹): 3536, 2372, 2217, 1869, 1635, 754, 688; ¹H NMR (700 MHz, CDCl₃) δ 7.49 (d, J = 7 Hz, 2H), 7.42 (t, J = 7.7, 2H), 7.32 (t, J = 7.7 Hz, 1H), 7.07 (s, 1H), 2.36 (s, 3H).; ¹³C NMR (175 MHz, CDCl₃, Keto isomer) δ 196.6, 129.8, 129.5, 128.4, 128.3, 119.8, 51.6, 27.0; HRMS (ESI – TOF), m/z [M + Na]⁺ Cal for C₁₀H₉NO: 182.0576; Found: 182.0580.

2-(3-Methylphenyl)-3-oxobutanenitrile (3m): Reaction time: 5 h ; Yield: 53% (0.461 g); Keto:enol tautomer(10:1); Pale yellow colour solid; $R_f = 0.17$ in 20% EtOAc in hexane; m.p = 110 °C; IR (KBr, v cm⁻¹): 3567, 2364, 2205, 1729, 1635, 1343, 1278, 1199, 785; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.2 Hz, 1H), 7.18 (t, J = 8.4 Hz, 3H), 4.63 (s, 1H), 2.25 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃, Keto isomer) δ 196.7, 130.2, 129.6, 129.6, 128.6, 116.4, 51.6, 27.0; HRMS (ESI – TOF), m/z $[M + Na]^+$ Cal for $C_{11}H_{11}NO$: 196.0733; Found: 196.0735.

2-(4-Chlorophenyl)-3-oxobutanenitrile (3n): Reaction time: 4 h ; Yield: 65% (0.627 g);

Keto:enol tautomer(4:1); Yellow colour solid; $R_f = 0.07$ in 20% EtOAc in hexane; m.p = 118 °C; IR (KBr, v cm⁻¹): 3567, 3109, 2368, 2221, 1700, 1653, 1491, 1353, 1271, 1008, 827, 780; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J =8.4 Hz , 2H), 7.33 (d, J = 8.4 Hz, 2H), 4.64 (s, 1H), 2.29 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃, Keto isomer) δ 195.9, 135.7, 129.9, 129.6, 129.3, 115.9, 50.7, 27.1; HRMS (ESI – TOF), m/z [M + Na]⁺ Cal for C₁₁H₁₁NO: 216.0187; Found: 216.0192.

General Procedure for the Synthesis of 5-Amino-4-arylpyrazoles 2a-x & 2aa-ac:

A round bottom flask was charged with β -ketonitrile (1 equiv, 1 mmol), aryl hydrazine (1.1 equiv, 1.1 mmol) and PTSA (cat.) in water, which was heated at 105 °C for 3-6 h. The reaction was monitored by TLC. After disappearance of the starting material, the reaction mixture was then cooled to room temperature and was extracted with ethyl acetate trice. The combined organic layer was washed with brine solution (25 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude products were purified through flash column chromatography using 20% ethyl acetate in hexane as eluent.

7.49-7.40 (m, 3H), 7.35 – 7.25 (m, 3H), 4.93 (s, 2H), 1.98 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ

146.3, 143.7, 139.2, 133.9, 133.2, 132.7, 129.0, 128.9, 127.7, 125.9, 125.3, 122.6, 104.2, 12.9; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₄BrN₃: 328.0444 & 330.0424; Found: 328.0438 & 330.0417.

5-Amino-4-(2-bromo-5-chlorophenyl)-3-methyl-1-phenyl-1H-pyrazole (2b): Reaction time: 3

h; Yield: 87 % (0.362 g); White color solid; $R_f = 0.33$ in 20% EtOAc in hexane; m.p = 138 °C; IR (KBr, v cm⁻¹): 3437, 1621, 1596, 1515, 1453, 1397, 1318, 1264, 1093, 1012, 810; 1H NMR (400 MHz, CDCl₃) δ 7.62 – 7.60 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.36-7.33 (m, 2H), 7.18 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.75 (s, 2H), 2.16 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 147.6, 142.3, 138.6, 135.7, 134.3, 133.5, 132.7, 129.6, 129.1, 127.4, 124.0, 123.4, 104.3, 13.0; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrClN₃: 362.0054 & 364.0033; Found: 362.0046 & 364.0025.

5-Amino-4-(2-bromo-5-fluorophenyl)-3-methyl-1-phenyl-1H-pyrazole (2c): Reaction time: 3

h; Yield: 72% (0.249 g); White color solid; $R_f = 0.31$ in 20% EtOAc in hexane; m.p = 98 °C; IR (KBr, v cm⁻¹): 3437, 2064, 1634, 1515, 1455, 1404, 1256, 1185, 1018 ; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 3H), 7.49 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.07 (dd, J = 9.2, 3.2 Hz, 1H), 6.95 (td, J = 8.0, 3.2 Hz, 1H), 3.76 (s, 2H), 2.17 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 161.9 (d, J = 246.7 Hz), 147.6, 146.9, 142.3, 138.6, 135.9 (d, J = 8.7 Hz), 134.4 (d, J = 8.7 Hz), 129.6, 127.4, 124.0, 119.8 (d, J = 28 Hz), 119.6 (d, J = 3.5 Hz), 116.3 (d, J = 28 Hz), 104.5, 13.0; ¹⁹F (376 MHz,CDCl₃): δ -115.6; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrFN₃: 346.0350 & 348.0330; Found: 346.0361 & 348.0343.

5-Amino-4-(2-bromo-5-methylphenyl)-3-methyl-1-phenyl-*1H***-pyrazole (2d):** Reaction time: 3 h ; Yield: 95 % (0.325 g); White color solid; $R_f = 0.26$ in 20% EtOAc in hexane; m.p = 135 °C; IR

(KBr, v cm⁻¹): 3437, 1634, 1558, 1455, 1398, 1017, 667; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J

 $Me = 7.6 \text{ Hz}, 2\text{H}, 7.55 \text{ (d, } J = 7.6 \text{ Hz}, 1\text{H}), 7.48 \text{ (t, } J = 7.2 \text{ Hz}, 2\text{H}), 7.33 \text{ (t, } J = 6.8 \text{ Hz}, 1\text{H}), 7.15 \text{ (s, } 1\text{H}), 7.02 \text{ (d, } J = 8 \text{ Hz}, 1\text{H}), 3.72 \text{ (s, } 2\text{H}), 2.34 \text{ (s, } 3\text{H}), 2.17 \text{ (s, } 3\text{H}); ^{13}\text{C} \text{ NMR} (175 \text{ MHz}, \text{CDCl}_3) \delta 147.8, 142.2, 138.9, 137.6, 133.7, 133.6, 132.9, 130.0, 129.5, 127.2, 123.8, 122.1, 105.5, 21.0, 13.0; \text{HRMS} (\text{ESI} - \text{TOF}), \text{m/z} \text{ [M + H]}^+ \text{ Cal for } C_{17}\text{H}_{16}\text{BrN}_3$: 342.0600 & 344.0580; Found: 342.0619 & 344.0600.

5-Amino-4-(2-bromo-5-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazole (2e): Reaction time:

 $\begin{array}{l} \underset{N_{P_{h}}}{\overset{\mathsf{OMe}}{\underset{P_{h}}} 3 \text{ h} ; \text{Yield: 95\% (0.340 g)}; \text{ White color solid; } R_{f} = 0.26 \text{ in 20\% EtOAc in hexane; m.p} = 148 °C; IR (KBr, v cm^{-1}): 3422, 1618, 1570, 1513, 1434, 1323, 1282, 1221, 1178, 1028, 1010, 817, 762; ^{1}H NMR (400 MHz, CDCl_3) \delta 7.61 (d, J = 7.6, 2H), 7.55 (d, J = 8.8 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 2.8 Hz, 1H), 6.77 (dd, J = 8.8, 2.8 Hz, 1H), 3.80 (s, 3H), 3.84 (brs, 2H) 2.17 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) \delta 159.0, 147.6, 142.3, 138.6, 134.6, 133.7, 129.5, 127.2, 123.8, 118.0, 115.8, 115.1, 105.3, 55.6, 12.9; HRMS (ESI – TOF), m/z [M + H]^+ Cal for C₁₇H₁₆BrN₃O: 358.0550 & 360.0530; Found: 358.0512 & 360.0494. \end{array}$

5-Amino-4-(2-bromo-4,5-dimethoxyphenyl)-3-methyl-1-phenyl-1H-pyrazole (2f): Reaction

time: 3 h; Yield: 98 % (0.380 g); White color solid; $R_f = 0.16$ in 20% EtOAc in hexane; m.p = 162-164 °C; IR (KBr, v cm⁻¹): 3430, 2304, 1618, 1507, 1463, 1264, 1208, 1174, 1064, 896, 785; ¹H NMR (700 MHz, CDCl₃) δ 7.62 (d, J = 7.7 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.33 (t, J = 7.7 Hz, 1H), 7.14 (s, 1H), 6.82 (s, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.73 (s, 2H), 2.17 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.1, 148.5, 147.9, 142.3, 138.9, 129.6, 127.1, 125.7, 123.8, 115.7, 115.6, 115.1, 105.3, 56.3, 56.2, 13.0; HRMS (ESI – TOF), m /z [M + H]⁺ Cal for $C_{18}H_{18}BrN_3O_2$: 388.0655 & 390.0635; Found: 388.0677 & 390.0656.

5-Amino-4-(2-bromo-3,4,5-trimethoxyphenyl)-3-methyl-1-phenyl-1H-pyrazole (2g): Reaction

time: 3 h; Yield: 95% (0.389 g); pale brown color solid; $R_f = 0.16$ in 20% $M_{P_h} = 0.16$ in hexane; m.p = 128 °C; IR (KBr, v cm⁻¹): 3422, 1638, 1513, 1452, 1379, 1342, 1243, 1105, 1008, 758; ¹H NMR (400 MHz, DMSO) δ 7.62 (d, J = 8 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.6 Hz, 1H), 6.78 (s, 1H), 4.94 (s, 2H), 3.82 (s, 3H), 3.81 (brs, 6H), 1.99 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 152.8, 151.5, 147.7, 142.6, 142.2, 138.8, 129.6, 129.4, 127.2, 123.8, 111.8, 111.3, 105.4, 61.2, 61.1, 56.3, 13.1; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₉H₂₀BrN₃O₃: 418.0761 & 420.0741; Found: 418.0769 & 420.0750.

5-Amino-4-(2-bromo-4-chlorophenyl)-3-methyl-1-phenyl-1H-pyrazole (2h): Reaction time: 6

h; Yield: 95% (0.392 g); White color solid; $R_f = 0.3$ in 20% EtOAc in hexane; m.p = 139 °C; IR (KBr, v cm⁻¹): 3053, 2986, 1617, 1597, 1546, 1513, 1421, 1265, 1055, 1005, 895, 739 ; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 2.4

Hz, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.37-7.32 (m, 2H), 7.28 – 7.26 (m, 1H), 3.72 (s, 2H), 2.14 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 147.6, 142.3, 138.6, 134.0, 133.6, 132.9, 132.5, 129.6, 128.1, 127.4, 125.8, 123.9, 104.2, 12.9; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrClN₃: 362.0054, 364.0033; Found: 362.0025, 364.0022.

5-Amino-4-(2-bromo-4-fluorophenyl)-3-methyl-1-phenyl-1H-pyrazole (2i): Reaction time: 3

Me N N N N H2 Fh h; Yield: 67% (0.236 g); White color solid; $R_f = 0.33$ in 20% EtOAc in hexane; m.p = 106 °C; IR (KBr, v cm⁻¹): 3424, 1616, 1652, 1575, 1539, 15151, 1453, 1256, 1199, 1071, 870, 762; ¹H NMR (700 MHz, CDCl₃) δ 7.61

(d, J = 7.7 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.44 (dd, J = 8.4, 2.8 Hz, 1H), 7.35 – 7.30 (m, 2H),

7.10 (td, J = 8.4, 2.8 Hz, 1H), 3.70 (s, 2H), 2.14 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 162.62 (d, J = 250.2), 147.89, 142.43, 138.77, 133.94 (d, J = 8.7), 130.08 (d, J = 3.5), 129.65, 127.36, 125.86 (d, J = 8.7), 123.92, 120.51 (d, J = 22.7), 115.1 (d, J = 21), 104.3, 12.9; ¹⁹F NMR (376 MHz, DMSO) δ -114.7. HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrFN₃: 346.0350 & 348.0330; Found: 346.0349 & 348.0331.

5-Amino-4-(2-bromo-3,5-di-tert-butylphenyl)-3-methyl-1-phenyl-1H-pyrazole (2j): Reaction

time: 3 h; Yield: 78 % (0.343 g); White color solid; $R_f = 0.3$ in 20% EtOAc in hexane; m.p = 209 °C; IR (KBr, v cm⁻¹): 3437, 2064, 1622, 1515, 1455, 1393, 1362, 1264, 1013, 737; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 2H), 7.49-7.46 (m, 3H), 7.32 (t, J = 7.2 Hz, 1H), 7.20

(d, J = 2 Hz, 1H), 3.69 (s, 2H), 2.14 (s, 3H), 1.59 (s, 9H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 148.2, 148.0, 142.1, 139.0, 135.6, 129.5, 128.0, 127.0, 124.8, 123.7, 123.0, 108.2, 37.6, 34.9, 31.4, 30.3, 13.0, 1.1; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₂₄H₃₀BrN₃: 440.1696 & 442.1677; Found: 440.1658 & 442.1633.

5-Amino-4-(2-bromophenyl)-1-phenyl-*1H*-pyrazole (2k): Reaction time: 6 h; Yield: 90 % (0.314 g); Pale yellow color solid; $R_f = 0.3$ in 20% EtOAc in hexane; m.p = 125 °C; IR (KBr, v cm⁻¹): 3429, 1686, 1656, 1619, 1555, 1497, 1410, 1376, 1023, 1013, 939, 762. ; ¹H NMR (700 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.65-7.63 (m, 3H), 7.51 (t, J = 7.7 Hz, 2H),7.44 – 7.33 (m, 3H), 7.17 (t, J = 7.3 Hz, 1H), 3.93 (s, 2H).; ¹³C NMR (175 MHz, CDCl₃) δ 141.9, 140.5, 138.6, 133.7, 133.5, 131.7, 129.7, 128.5, 127.8, 127.7, 124.1, 123.9, 105.6.; HRMS (ESI – TOF), m /z [M + H]⁺ Cal for C₁₅H₁₂BrN₃: 314.0287 &

316.0267; Found: 314.0288 & 316.0270.

5-Amino-4-(2-bromophenyl)-3-methyl-1-(4-tolyl)-1H-pyrazole (21): Reaction time: 3 h; Yield: 93% (0.318 g); Pale pink color solid; $R_f = 0.28$ in 20% EtOAc in hexane; m.p = 119 °C; IR (KBr, v cm⁻¹): 3438, 1655, 1619, 1571, 1519, 1393, 1059, 1019, NH 821,755; ¹H NMR (400 MHz, DMSO) δ 7.72 (d, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.42 (t, J = 6.8 Hz, 1H), 7.33 (dd, J = 7.6, 1.6 Hz, 1H), 7.29 - 7.24(m, 3H), 4.89 (s, 2H), 2.34 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 146.0, 143.6, 136.8, 135.2, 134.0, 133.2, 132.7, 129.5, 128.9, 127.8, 125.3, 122.7, 104.0, 20.6, 12.9; HRMS (ESI -TOF), m /z $[M + H]^+$ Cal for C₁₇H₁₆BrN₃: 342.0600 & 344.0580; Found: 342.0580 & 344.0557.

5-Amino-4-(2-bromo-5-methoxyphenyl)-3-methyl-1-(4-tolyl)-1H-pyrazole (2m): Reaction

123.9, 115.8, 115.1, 105.2, 55.6, 21.2, 13.0; HRMS (ESI - TOF), m/z [M + H]⁺ Cal for C₁₈H₁₈BrN₃O: 372.0706 & 374.0686; Found: 372.0722 & 374.0703.

5-Amino-4-(5-amino-4-(2-bromophenyl)-3-methyl-1H-pyrazol-1-yl)benzonitrile (2n):

Reaction time: 2 h; Yield: 92% (0.324 g); Pale yellow color solid; $R_f = 0.26$ in 20% EtOAc in hexane; m.p = 130 °C; IR (KBr, v cm⁻¹): 3422, 2070, 1627, 1517, 1413, 1391, 1059, 1003, 755; ¹H NMR (400 MHz, DMSO) δ 7.92 (brs, 4H), 7.73 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.34 - 7.29 (m, 2H), 5.25 (s, 2H),1.98 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.5, 142.8, 142.6, 133.5, 133.4, 133.0, 132.9, 129.5, 127.9, 125.5, 122.6, 118.6, 109.6, 107.4, 13.0; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₇H₁₃BrN₄: 353.0396 & 355.0376; Found: 353.0415 & 355.0393.

5-Amino-4-(2-bromophenyl)-1-(4-bromophenyl)-3-methyl-1H-pyrazole (20): Reaction time: 5

C₁₆H₁₃Br₂N₃: 405.9549, 407.9529 & 409.9509; Found: 405.9560, 407.9494 & 409.9523.

5-Amino-4-(2-bromo-5-methoxyphenyl)-1-(4-bromophenyl)-3-methyl-*1H*-pyrazole (2p):

134.4, 133.8, 132.6, 125.1, 120.6, 118.1, 115.8, 115.3, 106.0, 55.6, 13.0. HRMS (ESI – TOF), m/z $[M + H]^+$ Cal for $C_{17}H_{15}Br_2N_3O$: 435.9655, 437.9635 & 439.9614; Found: 435.9662, 437.9613 &

439.9624.

5-Amino-4-(2-bromo-4,5-dimethoxyphenyl)-1-(4-bromophenyl)-3-

methyl-*1H***-pyrazole (2q):** Reaction time: 3 h ; Yield: 98% (0.457 g); white color solid; $R_f = 0.25$ in 20% EtOAc in hexane; m.p = 128-130 °C; IR (KBr, v cm⁻¹): 3415, 1624, 1621, 1591, 1510, 1503, 1396, 1234, 1208, 1173, 832;

¹H NMR (700 MHz, CDCl₃) δ 7.60 - 7.54 (m, 4H), 7.14 (s, 1H), 6.80 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.69 (s, 2H), 2.15 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.2, 148.6, 148.4, 142.3, 138.0, 132.6, 125.4, 125.0, 120.5, 115.8, 115.6, 115.0, 105.9, 56.3, 56.2, 13.0; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₈H₁₇Br₂N₃O₂: 465.9760, 467.9741 & 469.9720; Found: 465.9769, 467.9722 & 469.9735.

5-Amino-4-(2-bromo-4-chlorophenyl)-1-(4-bromophenyl)-3-methyl-*1H*-pyrazole (2r):

Reaction time: 4 h; Yield: 94% (0.415 g); White color solid; $R_f = 0.63$ in 20% EtOAc in hexane; m.p = 122 °C; IR (KBr, v cm⁻¹): 3431, 2054, 1616, 1569, 1506, 1456, 1403, 1264, 1010, 832, 738; ¹H NMR (700 MHz, CDCl₃) δ 7.73

 $\int_{Br} (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.37 (d, J = 7.7 Hz, 1H), 7.27 - 7.26 (m, 1H), 3.71 (s, 2H), 2.14 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) & 148.1, 142.3, 137.7, 134.3, 133.6, 132.9, 132.7, 132.2, 128.1, 125.8, 125.1, 120.7, 104.7, 12.9; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₂Br₂ClN₃: 439.9159, 441.9138 & 443.9118; Found: 439.9156, 441.9132 & 443.9112.$

5-Amino-1, 4-bis(2-bromophenyl)-3-methyl-1H-pyrazole (2s): Reaction time: 3 h; Yield: 84%

(0.341 g); White color solid; $R_f = 0.2$ in 20% EtOAc in Hexane; m.p = 120-122 °C; IR (KBr, v cm⁻¹): 3355, 1617, 1515, 1390, 1318, 1264, 1028, 1005, 737, 448; ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.67 (m, 2H), 7.65-7.46 (m, 2H), 7.48-7.05 (m, 4H), 3.61 (s, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0,

143.5, 137.5, 133.9, 133.6, 133.1, 133.0, 130.8, 130.6, 129.0, 128.6, 127.6, 125.4, 122.4, 104.9, 13.0; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₆H₁₃Br₂N₃: 405.9549, 407.9529 & 409.9509. Found: 405.9576, 407.9567 & 409.9546.

5-Amino-4-(2-bromo-5-methoxyphenyl)-1-(2-bromophenyl)-3-methyl-1H-pyrazole (2t):

Reaction time: 3 h; Yield: 76% (0.332 g); White color solid; $R_f = 0.16$ in 20% EtOAc in Hexane; m.p = 106 °C; IR (KBr, v cm⁻¹): 3307, 2062, 1630, 1536, 1461, 1384, 1283, 1219, 1027, 704; ¹H NMR (400 MHz, CDCl₃) δ 8.15 -7.28 (m, 5H), 7.19 - 6.52 (m, 2H), 3.82 (s, 3H), 3.57 (s, 2H), 2.19 (s, 3H); ¹³C NMR

(175 MHz, CDCl₃) δ 159.1, 148.1, 143.5, 137.7, 134.8, 133.8, 133.7, 130.9, 130.7, 128.7, 122.5, 118.2, 115.9, 115.1, 105.1, 55.7, 13.1; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₇H₁₅Br₂N₃O: 435.9655, 437.9635 & 439.9614; Found: 435.9711, 437.9695 & 439.9673.

5-Amino-4-(2-bromo-5-chlorophenyl)-1-(2-bromophenyl)-3-methyl-1H-pyrazole (2u):

Reaction time: 3 h; Yield: 75% (0.331 g); White color solid; $R_f = 0.3$ in 20% EtOAc in Hexane; m.p = 135-137 °C; IR (KBr, v cm⁻¹): 3436, 1617, 1585, 1517, 1442, 1311, 1264, 1094, 1012, 737; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.73(d, J = 7.6 Hz, 1H), 7.32-7.34 (m, 2H), 7.19 (d, J = 8.4 Hz, 1H), 3.56 (s, 2H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) § 148.0, 143.5, 137.5, 135.8, 134.2, 133.7, 133.5, 132.8, 131.0, 130.7, 129.1, 128.8, 123.5, 122.5, 103.9, 13.1; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₆H₁₂Br₂ClN₃: 439.9159, 441.9138 & 443.9118; Found: 439.9186, 441.9175 & 443.9148.

5-Amino-4-(2-bromo-5-fluorophenyl)-1-(2-bromophenyl)-3-methyl-1H-pyrazole (2v):

Reaction time: 3 h; Yield: 73% (0.310 g); White color solid; $R_f = 0.26$ in 20% EtOAc in Hexane; m.p = 115 °C; IR (KBr, v cm⁻¹): 3202, 2067, 1619, 1513, 1312, 1186, 1055, 1016, 765; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8 Hz, 1H), 7.68 – 7.58 (m, 1H), 7.58 – 7.40 (m, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.94 (t, J = 6.8 Hz, 1H), 3.57 (s, 2H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

161.9 (d, J = 246.6 Hz), 147.9, 143.5, 137.5, 135.7 (d, J = 8.7 Hz), 134.3 (d, J = 8.5 Hz), 133.7, 130.9, 130.6, 128.8, 122.4, 119.8 (d, J = 21.6 Hz), 119.6 (d, J = 3.5 Hz), 116.2 (d, J = 22.4 Hz), 13.1; ¹⁹F (376 MHz,CDCl₃): δ -115.9; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₆H₁₂Br₂FN₃: 423.9455, 425.9435 & 427.9414; Found: 423.9469, 425.9455, 427.9428.

5-Amino-4-(2-bromo-5-methylphenyl)-1-(2-bromophenyl)-3-methyl-1H-pyrazole (2w):

Me N N N NH₂ Br Br

Reaction time: 6 h; Yield: 70% (0.294 g); White color solid; $R_f = 0.25$ in 20% EtOAc in Hexane; m.p = 188 °C; IR (KBr, v cm⁻¹): 3402, 3267, 2074, 1621, 1528, 1316, 1265, 1026, 828, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0

Hz, 1H), 7.56 (s, 1H), 7.48 – 7.32 (m, 3H), 7.29 – 7.18 (m, 2H), 3.54 (s, 2H), 2.42 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.5, 141.4, 135.0, 134.1, 134.0, 133.2, 133.1, 130.2, 129.4, 128.9, 127.6, 125.5, 122.1, 104.8, 21.1, 13.1; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₇H₁₅Br₂N₃: 419.9705, 421.9686 & 423.9665; Found: 419.9681, 421.9646 & 423.9637.

5-Amino-1-(2-bromo-4-fluorophenyl)-4-(2-bromophenyl)-3-methyl-*1H*-pyrazole (2x):

Reaction time: 3 h; Yield: 72% (0.306 g); White color solid; $R_f = 0.3$ in 20% EtOAc in Hexane; m.p = 170-172 °C; IR (KBr, v cm⁻¹): 3053, 2986, 2303, 1517, 1421, 1265, 1204, 895, 739, 705; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 1H), 7.53 (dd, J = 8.6, 5.6 Hz, 1H), 7.6 (dd, J = 7.8, 2.4 Hz, 1H), 7.42 - 7.28

(m, 2H), 7.25 – 7.10 (m, 2H), 3.51 (s, 2H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 252.3 Hz), 148.3, 143.6, 134.1 (d, J = 3.5 Hz), 133.8, 133.2, 133.0, 131.8 (d, J = 9.2 Hz), 129.1, 127.7, 125.5, 123.4 (d, J = 10.2 Hz), 120.8 (d, J = 25.3 Hz), 115.8 (d, J = 22.1 Hz), 105.1, 13.1; ¹⁹F (376 MHz, DMSO): δ -111.6; HRMS (ESI-TOF), m/z [M+H]⁺ Cal for C₁₆H₁₂Br₂FN₃: 423.9455, 425.9435 & 427.9414; Found: 423.9444, 425.9413 & 427.9404.

5-Amino-1-(2-chlorophenyl)-4-(2-bromophenyl)-3-methyl-1H-pyrazole (2y): Reaction time: 4

h; Yield: 40% (0.181 g); Orange viscous liquid; $R_f = 0.11$ in 20% EtOAc in hexane; IR (KBr, v cm⁻¹): 2924, 2194, 1731, 1494, 1390, 1264, 1005, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 1H), 7.57 - 7.51 (m, 2H), 7.44 -7.32 (m, 4H), 7.24 - 7.15 (m, 1H), 3.57 (s, 2H), 2.16 (s, 3H).; ¹³C NMR (100

MHz, CDCl₃) δ 148.3, 143.7, 136.0, 133.8, 133.2, 133.1, 132.2, 130.5(2C), 130.4, 129.0, 128.1, 127.7, 125.4, 104.9, 13.1.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrClN₃:362.0054, 364.0033; Found: 362.0044, 364.0021.

5-Amino-1-(2-bromophenyl)-4-(2-iodophenyl)-3-methyl-1H-pyrazole (2z): Reaction time: 5

h; Yield: 80% (1.82 g); Pale yellow colour solid ; $R_f = 0.1$ in 20% EtOAc in hexane; m.p = 150 °C; IR (KBr, v cm⁻¹): 2920, 2668, 1615, 1516, 1491, 1389, 1250, 1002, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.51 – 7.38 (m, 2H), 7.37 - 7.30 (m, 2H), 7.05 (t, J = 7.2 Hz, 1H), 3.52 (s, 2H), 2.15 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.2, 139.5, 137.9, 137.4, 133.7, 132.4, 131.0, 130.7, 129.4, 128.8, 128.6, 122.4, 108.7, 102.8, 13.1.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₃BrIN₃: 453.9410, 455.9390;

Found: 453.9400, 455.9375.

5-Amino-1-(2-bromophenyl)-4-phenyl-3-methyl-*1H***-pyrazole (2aa):** Reaction time: 3 h; Yield: 70% (1.15 g); Pale yellow colour solid ; $R_f = 0.1$ in 20% EtOAc in hexane; m.p = 218 °C; IR (KBr, v cm⁻¹): 3056, 2923, 1576, 1437, 1320, 1265, 1027, 759; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.0, 1.1 Hz, 1H), 7.51 (dd, J = 7.8, 1.5 Hz, 1H), 7.47 – 7.36 (m, 5H), 7.32 (td, J = 7.9, 1.6 Hz, 1H), 7.30 – 7.21

(m, 1H), 3.73 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.4, 133.7, 133.4,

130.9, 130.6, 129.0, 128.7, 128.6, 126.1, 122.3, 104.3, 13.3; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for Cal for C₁₆H₁₅N₃Br: 328.0444, 330.0424; Found: 328.0439, 330.0421.

5-Amino-1-(2-bromophenyl)-4-(3-methylphenyl)-3-methyl-1H-pyrazole (2ab): Reaction time:

4 h ; Yield: 67% (1.15 g); Pale yellow colour solid ; $R_f = 0.1$ in 20% EtOAc in hexane; m.p = 186 °C; IR (KBr, v cm⁻¹): 2624, 1844, 1267, 764,; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.39 - 7.30 (m, 2H), 7.24 - 7.15 (m, 2H), 7.10 (d, J = 7.6

Hz, 1H), 3.76 (s, 2H), 2.41 (s, 3H), 2.33 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.5, 138.7, 133.8(2C), 133.2, 131.0, 130.7, 129.4, 129.0, 128.8, 127.1, 125.8, 122.4, 104.5, 21.7, 13.3.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₇H₁₇N₃Br: 342.0600, 344.0580; Found: 342.0596, 344.0576.

5-Amino-1-(2-bromophenyl)-4-(4-chlorophenyl)-3-methyl-*1H***-pyrazole (2ac):** Reaction time: 3 h ; Yield: 72% (1.30 g) ; Yellow viscous liquid; $R_f = 0.13$ in 20% EtOAc in hexane; IR (KBr, v cm⁻¹): 3433, 3350, 3190, 3059, 1616, 1442, 1394, 1264, 1006, 822, 765; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 1H), 7.54 -7.44 (m, 2H), 7.43 -7.38 (m, 2H), 7.37 -7.30 (m, 3H), 3.73 (s, 2H), 2.30 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 143.5, 137.2, 133.8, 132.0, 131.9, 131.1, 130.6, 129.9, 129.3, 128.9, 122.3, 103.3, 13.2.; HRMS (ESI – TOF), m/z [M + H]⁺ Cal for C₁₆H₁₄N₃BrCl: 362.0054, 364.0033; Found: 362.0033, 364.0012

Procedure for Optimization of the N-Arylation 5-Amino-4-arylpyrazole 2a:

An oven dried 8 mL reaction vial was charged with copper-salt (5 mol %), ligand (10 mol %) and base (3 equiv), the respective 5-amino-4-(2-bromophenyl)pyrazole **2a** (0.5 mmol) in

solvent (2.0 mL) was stirred at rt-120 °C for 3 - 24 h. The reaction mixture was monitored by TLC. After the starting material had been completely consumed, the reaction mixture was purified by flash chromatography using hexane and EtOAc as eluent.

References:

- 1 J. M. McCall, R. C. Kelly and D. L. Romero, PCT Int. Appl., WO 2012/149157 A2.
- 2 N. Hisano, Y. Kamei, Y. Kansaku, M. Yamanaka and K. Mor, Org. Lett., 2018, 20, 4223.

Crystal Data for **5s** C₁₆H₁₂BrN₃ (M=326.20 g/mol): monoclinic, space group P2₁/n (no. 14), a = 7.1264(10) Å, b = 19.8670(19) Å, c = 19.419(3) Å, β = 94.326(14)°, V = 2741.5(6) Å³, Z = 8, T = 293(2) K, μ (MoK α) = 2.991 mm⁻¹, *Dcalc* = 1.581 g/cm³, 27049 reflections measured (6.582° ≤ 2 Θ ≤ 49.998°), 4819 unique (R_{int} = 0.2166, R_{sigma} = 0.1452) which were used in all calculations. The final R_1 was 0.0994 (I > 2 σ (I)) and wR_2 was 0.2384 (all data).

Figure S3. Molecular structure of compound 5s at 30% probability of thermal ellipsoids.

¹H & ¹³C NMR of β -Ketonitriles (**3a-n**):

¹³C Spectra of compound **3a** in CDCl₃ (100 MHz)

¹³C Spectra of compound **3b** in CDCl₃ (175 MHz)

¹³C Spectra of compound **3c** in CDCl₃ (175 MHz)

¹³C Spectra of compound **3e** in CDCl₃ (100 MHz)

ESI-31

ESI-32

ESI-33

¹³C Spectra of compound **3i** in CDCl₃ (175 MHz)

ESI-35

ESI-37

ESI-38

ESI-39

¹H & ¹³C NMR of 5-Aminopyrazoles (2a-x):

¹³C Spectra of compound **2a** in CDCl₃ (100 MHz)

ESI-40

¹³C Spectra of compound **2b** in CDCl₃ (175 MHz)

ESI-41

¹³C Spectra of compound **2c** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2d** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2e** in CDCl₃ (100 MHz)

ESI-45

¹³C Spectra of compound **2f** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2g** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2h** in CDCl₃ (175 MHz)

ESI-48

¹³C Spectra of compound **2i** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2j** in CDCl₃ (100 MHz)

ESI-51

ESI-52

¹³C Spectra of compound **2l** in DMSO-d₆ (100 MHz)

¹³C Spectra of compound **2m** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2n** in CDCl₃ (175 MHz)

¹³C Spectra of compound **20** in CDCl₃ (100 MHz)

¹³C Spectra of compound **2p** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2q** in CDCl₃ (175 MHz)

¹³C Spectra of compound **2r** in CDCl₃ (175 MHz)

ESI-63

 $^{19}\mathrm{F}$ Spectra of Compound 2v in DMSO-d_6 (377MHz)

ESI-68

¹³C Spectra of compound **2z** in CDCl₃ (100 MHz)

ESI-69

ESI-70

cua of compound 2ab in CDCI₃ (100

ESI-71

ESI-72

¹³C Spectra of compound **1a** in CDCl₃ (100 MHz)

¹³C Spectra of compound **1b** in DMSO-d₆ (100 MHz)

¹³C Spectra of compound **1d** in DMSO-d₆ (100 MHz)

¹³C Spectra of compound **1e** in DMSO-d₆ (175 MHz)

¹³C Spectra of compound **1f** in DMSO-d₆ (100 MHz)

¹³C Spectra of compound **1g** in DMSO-d₆ (175 MHz)

¹³C Spectra of compound **1h** in DMSO-d₆ (100 MHz)

ESI-81

¹³C Spectra of compound **1i** in DMSO-d₆ (100 MHz)

¹⁹F Spectra of Compound in DMSO-d₆ (376 MHz)

 $^{\rm 13}\text{C}$ Spectra of compound 1j in $\text{CDCI}_3\left(175\ MHz\right)$

ESI-84

¹³C Spectra of compound 1k in DMSO-d₆ (175 MHz)

¹³C Spectra of compound **11** in DMSO-d₆ (175 MHz)

¹³C Spectra of compound **1m** in DMSO-d₆ (100 MHz)

 13 C Spectra of compound **1n** in DMSO-d₆(175 MHz)

¹³C Spectra of compound **10** in DMSO-d₆ (175 MHz)

¹³C Spectra of compound **1p** in DMSO-d₆ (100 MHz)

¹³C Spectra of compound **1q** in DMSO-d₆ (100 MHz)

ESI-91

 13 C Spectra of compound 1r in DMSO-d₆ (100 MHz)

ESI-92

¹³C Spectra of compound **5s** in DMSO-d₆ (100 MHz)

ESI-94

¹H Spectra of compound 5u in DMSO-d₆ (400 MHz)

ESI-95

 ^{13}C Spectra of compound 5v in DMSO-d_6(100 MHz)

ESI-96

¹³C Spectra of compound **5w** in DMSO-d₆(100 MHz)

ESI-98

¹³C Spectra of compound **5**x in DMSO-d₆ (100 MHz)

 13 C Spectra of compound **6a** in DMSO-d₆ (100 MHz)

ESI-101

ESI-102

ESI-103

ESI-104

ESI-105

ESI-106

ESI-107

ESI-108

ESI-109