# Syntheses of $\alpha$ -CF3- $\alpha$ -quaternary ketones via *p*-quinone methides and their derivatization to compounds with successively congested stereogenic centers

Kyu Terashima,<br/>a Tomoko Kawasaki-Takasuka, a Tomohiro Agou,  $^{\rm b}$  To<br/>shio Kubota $^{\rm b}$  and Takashi Yamazaki $^{*\rm a}$ 

a Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan. E-mail: tyamazak@cc.tuat.ac.jp

b Department of Biomolecular Functional Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi 316-8511, Japan

## Index

| General information                                                                    | 2                      |
|----------------------------------------------------------------------------------------|------------------------|
| Synthesis of <i>pre</i> -NHC catalysts                                                 | 2                      |
| General procedure for the synthesis of ketones containing $\alpha$ -quaternary carbons | with a CF <sub>3</sub> |
| group                                                                                  | 3                      |
| Synthetic application of 3a                                                            | 14                     |
| X-Ray crystallographic data of the compounds                                           | 21                     |
| Computational study                                                                    | 75                     |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums                                       |                        |
| References                                                                             | 110                    |

#### **General information**

Most of reactions where an organic solvent was employed were performed under argon with magnetic stirring using a flame-dried glassware. Unless otherwise noted, materials were obtained from commercial suppliers including anhydrous THF, Et<sub>2</sub>O, and CH<sub>2</sub>Cl<sub>2</sub>, and were used without further purification. DMSO was freshly dried prior to the reaction over 4Å MS which was activated by irradiating with a microwave for 1 min and heating under vacuum for 1 h. The substrates **2** were prepared as our previous report<sup>1</sup>. Indole-3-carboxaldehyde<sup>2</sup>, 4-(benzyloxy)butanal<sup>3</sup>, methyl 5-oxopentanoate<sup>4</sup> were prepared according to the previous reports.

Analytical thin-layer chromatography (TLC) was routinely used for monitoring reactions by generally using a mixture of hexane and ethyl acetate. Spherical neutral silica gel (63–210  $\mu$ m) was employed for usual column chromatography. All diasteroselectivity were determined by <sup>19</sup>F NMR at the crude stage.

<sup>1</sup>H (300.40 MHz), <sup>13</sup>C (75.45 Hz), and <sup>19</sup>F (282.65 Hz) NMR spectra were recorded in CDCl<sub>3</sub> unless otherwise noted, and chemical shifts were reported in parts per million (ppm), downfield from internal tetramethylsilane (Me<sub>4</sub>Si:  $\delta$  0.00, for <sup>1</sup>H and <sup>13</sup>C) or hexafluorobenzene (C<sub>6</sub>F<sub>6</sub>:  $\delta$  –163.00 for <sup>19</sup>F). Data were tabulated in the following order: number of protons or fluorines, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sept, septet; m, multiplet; b, broad peak), coupling constants in Hertz. In the case of <sup>13</sup>C NMR, because it is difficult to observe perfluoroalkyl carbon atoms even after long time data acquisition due to multiple coupling, these data are not shown. Infrared (IR) spectra were reported in wave numbers (cm<sup>-1</sup>). High resolution mass spectrometry was performed by the positive ionization mode. Melting points were measured by Differential Scanning Calorimetry.

#### Synthesis of pre-NHC catalysts

*pre*-NHC catalysis  $A^5$ ,  $C^6$  and  $D^7$  were prepared according to the previous reports. However, because no required data for *pre*-NHC cat. B was found in the previous report,<sup>8</sup> we dealt with only this compound as new.

#### pre-NHC B



To a pressure tight glass tube were added 2-(chloromethyl)-1,3,5-trimethylbenzene (0.3412 g, 0.3989 mmol), 5-(2-hydroxyethyl)-4-methylthiazol (0.2902 g, 2.027 mmol), and MeCN (2 mL), and the

mixture was stirred for 24 h at 80 °C. After the volatiles were removed by evaporation, the residue was washed with MeCN to afford the desired product as a white solid (0.4121 g, 1.321, 66%). m.p.: 176.0 °C.

<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>):  $\delta$  2.18 (s, 6H), 2.28 (s, 3H), 2.61 (s, 3H), 3.06 (t, *J* = 5.1 Hz, 2H), 3.65 (t, *J* = 5.1 Hz, 2H), 5.50 (s, 1H), 7.04 (s, 2H), 8.95 (s, 1H).

<sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ 11.6, 19.1, 20.7, 29.4, 51.3, 59.6, 125.1, 129.7, 135.9, 138.7, 139.4, 142.2, 154.1.

IR (KBr) v 3282, 3223, 3096, 2906, 2862, 1612, 1591, 1490, 1428, 1337 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M–C1]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>22</sub>NOS, 276.1422; Found, 276.1416.

General procedure for the synthesis of ketones containing α-quaternary carbons with a CF<sub>3</sub> group 3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-phenylpropan-1-one. (3aa) (GP1)



To a test tube under an argon atmosphere were introduced **2a** (0.1684 g, 0.4000 mmol), benzaldehyde (0.0636 g, 0.0599 mmol, 1.5 eq.), *pre*-NHC **A** (0.0108 g, 0.0400 mmol, 10 mol%) and 4.0 mL of DMSO, where  $K_2CO_3$  (0.0056 g, 0.040 mmol, 10 mol%) was added. This reaction mixture was stirred for 2 h at 50 °C (see Table 2). After cooling to 30 °C, KF (0.0350 g, 0.602 mmol, 1.5 eq.) was added to the reaction mixture which was further stirred for 0.5 h at the same temperature. After quenching with sat. NH<sub>4</sub>Cl aq., the reaction mixture was extracted three times with Et<sub>2</sub>O and the combined organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration, evaporation of the volatiles afforded a crude material which was purified by silica gel column chromatography using AcOEt:hexane=3:1 to 1:1 as an eluent to furnish 0.0983 g (0.335 mmol) of the desired product **3aa** in 84% yield as a white solid.

Rf = 0.23 (hexane:AcOEt = 3:1).

m.p.: 139.5 °C.

<sup>1</sup>H NMR: δ 1.92 (s, 3H), 4.99 (brs, 1H), 6.87-6.92 (m, 2H), 7.23-7.28 (m, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 7.40-7.46 (m, 3H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 18.7 (q, *J* = 2.5 Hz), 60.0 (q, *J* = 23.0 Hz), 116.8, 125.6, 127.0 (q, *J* = 283.3 Hz), 129.1, 130.4, 133.4, 135.8 (q, *J* = 1.8 Hz), 159.0, 196.0.

<sup>19</sup>F NMR:  $\delta$  –73.40 (s).

IR (KBr) v 3463, 3078, 3015, 2994, 2952, 1672, 1593, 1518, 1439, 1283 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>13</sub>F<sub>3</sub>O<sub>2</sub>, 294.0868; Found, 294.0877.

1-(4-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one. (3ab)



Following to **GP1**, *p*-chlorobenzaldehyde (0.0845 g, 0.601 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.1118 g, 0.3401 mmol, 85%).

Rf = 0.20 (hexane:AcOEt = 3:1).

m.p.: 128.5 °C.

<sup>1</sup>H NMR: δ 1.90 (s, 3H), 5.11 (brs, 1H), 6.86-6.91 (m, 2H), 7.21-7.25 (m, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.37-7.42 (m, 2H).

<sup>13</sup>C NMR: δ 18.7 (q, *J* = 2.5 Hz), 59.3 (q, *J* = 23.6 Hz), 116.2, 125.6 (q, *J* = 283.9 Hz), 126.0, 128.6, 129.5, 131.3, 133.0, 139.2, 156.4, 195.1.

<sup>19</sup>F NMR: δ –73.37 (s).

IR (KBr) v 3109, 3030, 2899, 2828, 1698, 1590, 1518, 1458, 1391, 1257 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>O<sub>3</sub>, 329.0556; Found, 329.0570.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(4-methoxycarbonylphenyl)-2-methylpropan-1-one. (3ac)



Following to **GP1**, methyl *p*-formylbenzoate (0.0986 g, 0.601 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.0792 g, 0.225 mmol, 56%).

Rf = 0.17 (hexane:AcOEt = 3:1).

m.p.: 108.3 °C.

<sup>1</sup>H NMR:  $\delta$  1.90 (s, 3H), 3.90 (s, 3H), 5.34 (brs, 1H), 6.88-6.93 (m, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.45-7.49 (m, 2H), 7.91 (d, J = 8.7 Hz, 2H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 18.4 (q, *J* = 2.5 Hz), 52.7, 60.1 (q, *J* = 23.0 Hz), 116.9, 125.0 (q, *J* = 1.0 Hz),
126.9 (q, *J* = 282.5 Hz), 130.0, 130.5, 134.2, 139.5 (q, *J* = 1.9 Hz), 159.2, 166.2, 195.9.
<sup>19</sup>F NMR: δ -71.75 (s).

IR (KBr) v 3454, 3257, 2995, 2956, 1723, 1706, 1687, 1516, 1280, 1175 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O<sub>4</sub>, 353.1001; Found, 353.1008.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(4-methylphenyl)propan-1-one. (3ae)



Following to **GP1**, *p*-tolualdehyde (0.0817 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.0908 g, 0.2945 mmol, 74%).

Rf = 0.42 (hexane:AcOEt = 2:1).

m.p.: 139.8 °C.

<sup>1</sup>H NMR: δ 1.92 (s, 3H), 2.31 (s, 3H), 5.09 (brs, 1H), 6.86-6.90 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.7 Hz, 2H), 7.35-7.39 (m, 2H).

<sup>13</sup>C NMR: δ 18.8 (q, *J* = 2.5 Hz), 21.5, 59.2 (q, *J* = 22.7 Hz), 113.4, 116.0, 125.8 (q, *J* = 283.5 Hz), 126.5, 128.9, 129.6, 130.1, 143.7, 156.3, 196.0.

<sup>19</sup>F NMR:  $\delta$  –73.40 (s).

IR (KBr) v 3358, 3054, 3008, 2920, 1671, 1608, 1515, 1285, 1238, 973 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub>, 309.1102; Found, 309.1101.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(4-methoxyphenyl)-2-methylpropan-1-one. (3af)



MeO

Following to **GP1**, *p*-anisaldehyde (0.0817 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow oil (0.0728 g, 0.224 mmol, 56%).

<sup>1</sup>H NMR: δ 1.93 (s, 3H), 3.79 (s, 3H), 5.06 (brs, 1H), 6.70-6.75 (m, 2H), 6.85-6.89 (m, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.47-7.50 (m, 2H).

<sup>13</sup>C NMR: δ 19.0 (q, *J* = 2.5 Hz), 55.3, 59.2 (q, *J* = 22.9 Hz), 113.4, 116.0, 125.8 (q, *J* = 281.9 Hz), 126.6, 127.1, 129.5, 132.5, 156.4, 163.0, 195.1.

<sup>19</sup>F NMR: δ –73.28 (s).

IR (CHCl<sub>3</sub>) v 3427, 3038, 2956, 1674, 1572, 1559, 1512, 1266, 1174, 972 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>16</sub>F<sub>3</sub>O<sub>3</sub>, 325.1252; Found, 325.1270.

1-(3-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one. (3ag)



Following to **GP1**, methyl *m*-chlorobenzaldehyde (0.0843 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde and the reaction mixture was stirred for 4 h at 30 °C to afford the desired product as a yellow oil (0.1174 g, 0.3571 mmol, 89%). Rf = 0.20 (hexane:AcOEt = 3:1). <sup>1</sup>H NMR:  $\delta$  1.90 (s, 3H), 5.12 (brs, 1H), 6.88-6.93 (m, 2H), 7.14-7.20 (m, 2H), 7.30 (d, *J* = 8.7 Hz, 2H), 7.40 (dt, *J* = 6.9, 2.1 Hz, 1H), 7.50-7.51 (m, 1H). <sup>13</sup>C NMR:  $\delta$  18.4 (q, *J* = 2.4 Hz), 59.3 (q, *J* = 23.7 Hz), 116.3, 125.4, 125.6 (q, *J* = 283.9 Hz), 127.8, 129.5, 129.8, 132.7, 134.5, 136.4, 156.6, 195.3. <sup>19</sup>F NMR:  $\delta$  -73.77 (s). IR (CHCl<sub>3</sub>) v 3443, 3071, 3025, 2957, 1690, 1613, 1515, 1283, 1234, 1182 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub>Cl, 329.0556; Found, 329.0570.

### 2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-3,3,3-trifluoro-1-(3-methoxyphenyl)-2methylpropan-1-one. (3ai)



Following to **GP1**, *m*-anisaldehyde (0.0817 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde. After cooling to 30 °C and quenched with sat. NH<sub>4</sub>Cl aq, the reaction mixture was extracted three times with Et<sub>2</sub>O, and the combined organic phase was washed with sat. NaCl aq. . After drying over anhydrous Na<sub>2</sub>SO<sub>4</sub>, evaporation of the volatiles afforded a crude material which was introduced to a 30 mL round-bottomed flask with imidazole (0.0544 g, 0.799 mmol, 1.5 eq.) and CH<sub>2</sub>Cl<sub>2</sub> (0.8 mL). To this solution was added TBSCl (0.0906 g, 0.601 mmol, 1.5 eq.) at 30 °C, and the mixture was stirred for 1 h at that temperature. After the reaction mixture was quenched with sat. NH<sub>4</sub>Cl aq. and usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 10:1) to give the desired product as a colorless oil (0.1283 g, 0.2925 mmol, 73%).

Rf = 0.23 (hexane:AcOEt = 10:1).

<sup>1</sup>H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 1.91 (s, 3H), 3.68 (s, 3H), 6.87-6.92 (m, 3H), 6.95 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.06 (s, 1H), 7.11 (t, *J* = 8.1 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H).

<sup>13</sup>C NMR: δ –4.5, 18.2, 18.6 (q, *J* = 2.5 Hz), 25.6, 55.1, 59.3 (q, *J* = 23.6 Hz), 114.3, 119.0, 120.6, 122.3, 125.8 (q, *J* = 283.3 Hz), 127.0, 129.0, 129.4, 136.2, 156.3, 159.2, 195.5.

<sup>19</sup>F NMR:  $\delta$  –73.32 (s).

IR (CHCl<sub>3</sub>) v 2957, 2932, 289 6, 2859, 1688, 1596, 1511, 1277, 1260, 1178 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>30</sub>F<sub>3</sub>O<sub>3</sub>Si, 439.1916; Found, 439.1906. 3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(1-naphthyl)propan-1-one. (3aj)



Following to **GP1**, 1-naphthaldehyde (0.0939 g, 0.601 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow oil (0.1167 g, 0.3389 mmol, 85%).

Rf = 0.17 (hexane:AcOEt = 3:1).

<sup>1</sup>H NMR: δ 1.99 (s, 3H), 5.32 (brs, 1H), 6.91 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.44-7.57 (m, 3H), 7.69 (d, J = 8.7 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.98 (s, 1H). <sup>13</sup>C NMR: δ 18.7 (q, J = 2.5 Hz), 59.4 (q, J = 23.7 Hz), 116.2, 125.2, 125.8 (q, J = 285.6 Hz), 126.2, 126.7, 127.5, 127.9, 128.7, 129.60, 129.62, 131.96, 131.99, 135.0, 156.6, 196.6. <sup>19</sup>F NMR: δ –73.27 (s).

IR (CHCl<sub>3</sub>) v 3436, 3059, 3028, 2957, 1680, 1515, 1465, 1283, 1179, 1160 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub>, 345.1102; Found, 345.1122.

#### 3,3,3-Trifluoro-1-(2-franyl)-2-(4-hydroxyphenyl)-2-methylpropan-1-one. (3ak)



Following to **GP1**, furfural (0.0576 g, 0.599 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.0947 g, 0.333 mmol, 83%).

Rf = 0.13 (hexane:AcOEt = 3:1).

m.p.: 191.5 °C.

<sup>1</sup>H NMR: δ 1.99 (q, *J* = 0.6 Hz, 3H), 4.98 (s, 1H), 6.35 (dd, *J* = 3.6, 1.5 Hz, 1H), 6.75 (dd, *J* = 3.6, 0.6 Hz, 1H), 6.81-6.86 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 3.6, 0.6 Hz, 1H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 18.1 (q, *J* = 3.1 Hz), 59.3 (q, *J* = 22.9 Hz), 112.8, 116.4, 120.9, 125.9, 126.9 (q, *J* = 282.7 Hz), 130.4, 147.7, 150.8, 158.7, 184.6.

<sup>19</sup>F NMR:  $\delta$  –72.86 (s).

IR (KBr) v 3345, 3142, 3033, 2956, 1899, 1656, 1519, 1454, 1292, 1179 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>F<sub>3</sub>O<sub>3</sub>, 294.0660; Found, 284.0687.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(2-pyridyl)propan-1-one. (3al)



Following to **GP1**, 2-pyridinecarboxaldehyde (0.0646 g, 0.603 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.1064 g, 0.3604 mmol, 90%).

Rf = 0.17 (hexane:AcOEt = 3:1).

m.p.: 183.1 °C.

<sup>1</sup>H NMR: δ 1.91 (s, 3H), 6.81 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.42 (dd, *J* = 7.8, 4.8 Hz, 1H), 8.08 (d, *J* = 6.6 Hz, 1H), 8.36 (s, 1H), 8.64 (d, *J* = 4.8 Hz, 1H).

<sup>13</sup>C NMR: δ 18.5 (q, *J* = 2.3 Hz), 59.4 (q, *J* = 23.7 Hz), 116.4, 123.9, 124.2, 125.4 (q, *J* = 283.3 Hz), 129.5, 131.6, 138.5, 149.6, 151.5, 157.9, 193.9.

<sup>19</sup>F NMR: δ –73.15 (s).

IR (KBr) v 3109, 3030, 2899, 2828, 1698, 1590, 1518, 1458, 1390, 1154 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>12</sub>F<sub>3</sub>NO<sub>2</sub>, 295.0820; Found, 295.0833.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(3-pyridyl)propan-1-one. (3am)



Following to **GP1**, 3-pyridinecarboxaldehyde (0.0642 g, 0.599 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.0566 g, 0.192 mmol, 48%).

Rf = 0.37 (hexane:AcOEt = 2:1).

m.p.: 144.2 °C.

<sup>1</sup>H NMR: δ 2.25 (s, 3H), 4.86 (brs, 1H), 6.74-6.77 (m, 2H), 7.20-7.28 (m, 3H), 7.76 (dt, *J* = 1.8, 7.8 Hz, 1H), 8.06 (dt, *J* = 8.1, 0.9 Hz, 1H), 8.30 (ddd, *J* = 4.8 1.8, 0.9 Hz, 1H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 17.9 (q, *J* = 3.1 Hz), 59.9 (q, *J* = 23.0 Hz), 116.0, 125.0, 126.7, 127.2 (q, *J* = 283.3 Hz), 130.0, 137.9, 148.8, 149.6, 153.1, 158.0, 196.0.

<sup>19</sup>F NMR:  $\delta$  –73.65 (s).

IR (KBr) v 3367, 3064, 2999, 2946, 2800, 1695, 1599, 1512, 1284, 1188 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>F<sub>3</sub>NO<sub>2</sub>, 296.0898; Found, 296.0924.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(1*H*-indol-3-yl)-2-methylpropan-1-one (3an)



Following to **GP1**, indole-3-carboxaldehyde (0.0871 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.1080 g, 0.3240 mmol, 81%).

Rf = 0.42 (hexane:AcOEt = 2:1).

m.p.: 172.3 °C.

<sup>1</sup>H NMR:  $\delta$  2.23 (s, 3H), 5.15 (brs, 1H), 6.52 (d, J = 8.4 Hz, 1H), 6.82-6.87 (m, 2H), 7.01 (ddd, J = 8.6, 7.2, 1.2 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.22 (dt, J = 7.8, 0.9 Hz, 1H), 8.13 (d, J = 0.9 Hz, 1H), 8.31 (d, J = 7.8 Hz, 1H), 10.11 (s, 1H).

<sup>13</sup>C NMR: δ 24.5, 67.7 (q, *J* = 28.6 Hz), 114.9, 116.1, 118.7, 121.7, 123.2, 124.1, 125.4 (q, *J* = 285.8 Hz), 125.8, 127.2, 128.0, 137.0, 138.6, 156.9, 185.8.

<sup>19</sup>F NMR: δ-73.40 (s).

IR (KBr) v 3348, 3140, 2999, 2821, 1649, 1543, 1517, 1446, 1247, 1183 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub>F<sub>3</sub>NO<sub>2</sub>, 333.0977; Found, 333.0986.

#### 5,5,5-Trifluoro-4-(4-hydroxyphenyl)-4-methyl-1-phenylprop-1-en-3-one (3ao)



Following to **GP1**, cinnamaldehyde (0.0793 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a yellow solid (0.0612 g, 0.189 mmol, 47%).

Rf = 0.27 (hexane:AcOEt = 3:1).

m.p.: 134.1 °C.

<sup>1</sup>H NMR: δ 1.83 (s, 3H), 6.49 (d, *J* = 15.3 Hz, 1H), 6.85-6.90 (m, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.33-7.43 (m, 5H), 7.76 (d, *J* = 15.6 Hz, 1H).

<sup>13</sup>C NMR: δ 17.6 (q, *J* = 2.9 Hz), 59.4 (q, *J* = 23.6 Hz), 116.0, 121.3, 125.7, 125.8 (q, *J* = 284.6 Hz), 128.5, 128.8, 129.7, 130.9, 134.0, 144.8, 156.3, 194.3.

<sup>19</sup>F NMR:  $\delta$  –71.91 (s).

IR (KBr) v 3441, 3020, 2926, 1684, 1602, 1516, 1279, 1156, 1035, 826 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub>, 321.1102; Found, 321.1130.

1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-5-phenyl-3-pentanone (3aq)



Following to **GP1**, 3-phenylpropionaldehyde (0.0805 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a white solid (0.1025 g, 0.2923 mmol, 80%).

Rf = 0.30 (hexane:AcOEt = 3:1).

m.p.: 68.4 °C.

<sup>1</sup>H NMR: δ 1.69 (s, 3H), 2.49-2.68 (m, 2H), 2.78-2.97 (m, 2H), 5.17 (m, 1H), 6.77-6.81 (m, 2H), 7.03-7.07 (m, 4H), 715-7.26 (m, 3H).

<sup>13</sup>C NMR: δ 17.0 (q, *J* = 3.1 Hz), 30.0, 40.0 (q, *J* = 1.9 Hz), 60.1 (q, *J* = 23.6 Hz), 115.8, 125.4, 125.7 (q, *J* = 283.3 Hz), 126.2, 128.4, 129.1, 140.2, 156.1, 204.9.

<sup>19</sup>F NMR:  $\delta$  –71.90 (s).

IR (KBr) v 3109, 3030, 2899, 2828, 1698, 1590, 1518, 1458, 1390, 1154 cm<sup>-1</sup>.

HRMS (FAB+, m/z): [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>F<sub>3</sub>O<sub>2</sub>, 323.1259; Found, 323.1260.

6-Benzyloxy-1,1,1-trifluoro-2-(4-hydroxyphenyl)-2-methyl-3-hexanone (3ar)



Following to **GP1**, 4-(benzyloxy)butanal (0.0805 g, 0.600 mmol, 1.5 eq.) was used instead of benzaldehyde to afford the desired product as a colorless liquid (0.1025 g, 0.2923 mmol, 80%). Rf = 0.30 (hexane:AcOEt = 3:1).

<sup>1</sup>H NMR: δ 1.76-1.97 (m, 5H), 2.31-2.52 (m 2H), 3.34-3.48 (m, 2H), 4.48 (s, 2H), 5.04 (brs, 1H), 6.80-6.85 (m, 2H), 7.17-7.35 (m, 7H).

<sup>13</sup>C NMR: δ 17.2 (q, *J* = 2.4 Hz), 23.8, 34.7, 60.1 (q, *J* = 23.6 Hz), 68.9, 72.7, 115.8, 125.4, 125.7 (q, *J* = 283.3 Hz), 127.4, 128.4, 129.0, 137.7, 156.3, 205.5.

<sup>19</sup>F NMR:  $\delta$  –71.90 (s).

IR (CHCl<sub>3</sub>) v 3380, 3031, 2934, 2867, 1718, 1613, 1516, 1279, 1160, 1084 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>O<sub>3</sub>, 367.1521; Found, 367.1528.

Methyl 6-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-7,7,7-trifluoro-6-methyl-5oxoheptanoate (3as)



Following to **GP1**, methyl 5-oxopentanoate (0.1556 g, 1.196 mmol, 3.0 eq.) was used instead of benzaldehyde. After cooling to 30 °C and quenched with sat. NH<sub>4</sub>Cl aq., the reaction mixture was extracted three times with Et<sub>2</sub>O and the combined organic phase was washed with sat. NaCl aq. which was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration, evaporation of the volatiles afforded a crude material. To a 30 mL round-bottomed flask were added this crude material, imidazole (0.0547 g, 0.803 mmol, 1.5 eq.) and CH<sub>2</sub>Cl<sub>2</sub> (0.8 mL), where TBSCl (0.0906 g, 0.601 mmol, 1.5 eq.) was introduced at 30 °C. After stirring for 1 h, to the mixture was further added imidazole (0.054 g, 0.799 mmol, 1.5 eq.) and TBSCl (0.0910 g, 0.604 mmol, 1.5 eq.) once more and the mixture stirred at 30 °C for 1 h for completion of the reaction. The reaction mixture was quenched with sat. NH<sub>4</sub>Claq. and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. After usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 10:1) to give the desired product as a colorless oil (0.1211 g, 0.2800 mmol, 70%). Rf = 0.16 (hexane:AcOEt = 10:1).

<sup>1</sup>H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 1.76 (s, 3H), 2.16-2.46 (m, 4H), 3.61 (s, 3H), 6.83-6.88 (m, 2H), 7.15 (d, *J* = 8.4 Hz, 2H).

<sup>13</sup>C NMR: δ –4.51, 17.3 (q, *J* = 1.9 Hz), 17.9, 18.1, 19.1, 25.5, 32.6, 36.8 (q, *J* = 1.9 Hz) 51.4, 60.1 (q, *J* = 23.6 Hz), 120.3, 125.7 (q, *J* = 283.8 Hz), 126.4, 128.7, 156.0, 173.3, 204.1.

<sup>19</sup>F NMR:  $\delta$  –71.65 (s).

IR (CHCl<sub>3</sub>) v 3031, 2955, 2829, 2859, 1725, 1609, 1512, 1472, 1273, 1162 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>32</sub>F<sub>3</sub>O<sub>4</sub>Si, 433.2022; Found, 433.2043.

#### 1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2,4-dimethyl-3-pentanone (3at)



Following to **GP1**, isobutyraldehyde (0.0870 g, 1.21 mmol, 3.0 eq.) was used instead of benzaldehyde to afford the desired product as a white solid (0.571 g, 0.219 mmol, 55%).

Rf = 0.20 (hexane:AcOEt = 3:1).

m.p.: 139.5 °C.

<sup>1</sup>H NMR:  $\delta$  0.94 (d, J = 7.5 Hz, 3H), 1.05 (d, J = 7.5 Hz, 3H), 1.81 (s, 3H), 2.60 (sept, J = 7.5 Hz, 1H), 5.21 (brs, 1H), 6.85-6.90 (m, 2H), 7.22 (d, J = 9.0 Hz, 2H)

<sup>13</sup>C NMR: δ 16.6 (q, *J* = 2.4 Hz), 20.9, 21.2, 36.5, 60.7 (q, *J* = 23.7 Hz), 115.8, 124.7, 125.7 (q, *J* =

283.8 Hz), 129.5, 156.4, 210.8. <sup>19</sup>F NMR: δ –71.94 (s). IR (KBr) v 3459, 3384, 2974, 2938, 2880, 1705, 1603, 1517, 1279, 1151 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>F<sub>3</sub>O<sub>2</sub>, 260.1024; Found, 260.1021.

#### 1-Cyclohexyl-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one (3au)



Following to **GP1**, cyclohexanecarboxaldehyde (0.1346 g, 1.20 mmol, 3.0 eq.) was used instead of benzaldehyde, and the crude product was purified by column chromatography (hexane:AcOEt = 3:1) and the resultant solid was washed with hexane to afford the desired product as a white solid basically as a pure condition (0.0463 g, 0.154 mmol, 39%).

m.p.: 141.3 °C.

Rf = 0.20 (hexane:AcOEt = 3:1).

<sup>1</sup>H NMR: δ 0.91–1.27 (m, 3H), 1.35–1.72 (m, 7H), 1.80 (tt, *J* = 11.1, 3.6 Hz, 1H), 5.26 (brs, 1H), 6.86-6.91 (m, 2H), 7.23 (d, *J* = 8.7 Hz, 2H).

<sup>13</sup>C NMR: δ 16.6 (q, *J* = 2.5 Hz), 25.26, 25.33, 25.4, 30.5, 31.2, 47.1, 60.6 (q, *J* = 23.0 Hz), 115.7, 124.8, 125.7 (q, *J* = 283.9 Hz), 129.5, 156.2, 209.1.

<sup>19</sup>F NMR:  $\delta$  –71.98 (s).

IR (KBr) v 3415, 2998, 2937, 1893, 1702, 1614, 1593, 1517, 1448, 1162 cm<sup>-1</sup>.

HRMS (FAB+, m/z): [M]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>O<sub>2</sub>, 300.1337; Found, 300.1350.

#### 2-(4-Hydroxyphenyl)-1-phenyl-2-(trifluoromethyl)-1-pentanone. (3ba)



Following to **GP1**, **2b** (0.1792 g, 0.3995 mmol) was used instead of **2a** and the reaction mixture was stirred at 50 °C for 4 h to afford the desired product as a white solid (0.0442 g, 0. 137 mmol, 32%).

Rf = 0.20 (hexane:AcOEt = 3:1).

m.p.: 148.9 °C.

<sup>1</sup>H NMR: δ 0.77 (t, *J* = 7.2 Hz, 3H), 0.97-1.11 (m, 1H), 1.54-1.67 (m, 1H), 2.29 (tm, *J* = 13.2 Hz, 1H), 2.59 (ddd, *J* = 14.7, 12.9, 4.8 Hz, 1H), 4.80 (brs, 1H), 6.86 (d, *J* = 8.7 Hz, 2H), 7.23-7.29 (m, 4H), 7.40-7.48 (m, 3H).

<sup>13</sup>C NMR: δ 14.7, 18.1 (q, J = 2.5 Hz), 35.7, 62.9 (q, J = 21.8 Hz), 115.9, 125.9 (q, J = 282.8 Hz), 127.4, 128.2, 129.5, 129.9,132.7, 135.6, 156.2, 195.9.
<sup>19</sup>F NMR: δ –69.65 (s).
IR (KBr) v 3393, 3071, 2969, 2881, 1667, 1602, 1515, 1448, 1280, 1224 cm<sup>-1</sup>.
HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>F<sub>3</sub>O<sub>2</sub>, 323.1259; Found, 323.1252.

#### 1-(2-Franyl)-2-(4-hydroxyphenyl)-2-(trifluoromethyl)-1-pentanone. (3bk)



Following to **GP1**, **2b** (0.1792 g, 0.3995 mmol) and furfural (0.0576 g, 0.599 mmol, 1.5 eq.) were used instead of benzaldehyde and **2a** and the reaction mixture was stirred at 50 °C for 4 h to afford the desired product as a brown solid (0.0368 g, 0.130 mmol, 32%).

Rf = 0.23 (hexane:AcOEt = 2:1).

m.p.: 143.2 °C.

<sup>1</sup>H NMR:  $\delta$  0.90 (t, J = 7.2 Hz, 3H), 1.10-1.21 (m, 1H), 1.59-1.72 (m, 1H), 2.41-2.59 (m, 2H), 4.97 (brs, 1H), 6.36 (dd, J = 3.6, 1.5 Hz, 1H), 6.74 (dd, J = 3.6, 0.6 Hz, 1H), 6.79-6.84 (m, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 3.6, 0.6 Hz, 1H).

<sup>13</sup>C NMR: δ 14.9, 19.1 (q, *J* = 2.5 Hz), 35.6, 62.8 (q, *J* = 22.0 Hz), 112.8, 116.2, 120.2, 126.9, 127.1 (q, *J* = 290.8 Hz), 130.6, 147.6, 151.7, 158.5, 184.2.

<sup>19</sup>F NMR: δ –69.65 (s).

IR (KBr) v 3375, 3144, 2970, 2881, 1657, 1517, 1453, 1275, 1228, 1165 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>F<sub>3</sub>O<sub>3</sub>, 313.1052; Found, 313.1047.

#### 4-(4-Hydroxyphenyl)-1-phenyl-4-(trifluoromethyl)-3-heptanone (3bq)



Following to **GP1**, 3-phenylpropionaldehyde (0.0806 g, 0.600 mmol, 1.5 eq.) and **2b** (0.1792 g, 0.3995 mmol) were used instead of benzaldehyde and **2a** and the reaction mixture was stirred at 50 °C for 6 h to afford the desired product as a white solid (0.1258 g, 0.3590 mmol, 90%).

Rf = 0.37 (hexane:AcOEt = 3:1).

m.p.: 147.1 °C.

<sup>1</sup>H NMR:  $\delta 0.93$  (t, J = 7.2 Hz, 3H), 1.10-1.29 (m, 1H), 1.38-1.53 (m, 1H), 2.03 (brt, J = 12.9 Hz, 2H),

2.28 (t, *J* = 12.9 Hz, 1H), 2.29 (t, *J* = 12.9 Hz, 1H), 2.57 (dt, *J* = 17.7, 7.8 Hz, 1H), 2.64 (dt, *J* = 17.4, 7.8 Hz, 1H), 2.89 (t, *J* = 7.8 Hz, 2H), 4.99 (brs, 1H), 6.76 (d, *J* = 8.7 Hz, 2H), 7.00 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 6.9 Hz, 2H) 7.15-7.24 (m, 3H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 15.0, 19.0 (q, *J* = 2.5 Hz), 30.3, 34.7, 40.9 (q, *J* = 1.9 Hz), 64.5 (q, *J* = 22.4 Hz), 116.3, 128.2, 126.7, 127.1 (q, *J* = 284.2 Hz), 129.0, 129.3, 130.4, 141.7, 158.4, 204.1.
<sup>19</sup>F NMR: δ –67.11 (s).

IR (KBr) v 3477, 3026, 2971, 2881, 2880, 1715, 1603, 1513, 1219, 1172 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>O<sub>2</sub>, 351.1572; Found, 351.1557.

4-(4-Hydroxyphenyl)-5-methyl-1-phenyl-4-(trifluoromethyl)-3-hexanone (3cq)



Following to **GP1**, 3-phenylpropionaldehyde (0.0806 g, 0.600 mmol, 1.5 eq.) and **2c** (0.1792 g, 0.3995 mmol) were used instead of benzaldehyde and **2a** and the reaction mixture was stirred at 50 °C for 6 h to afford the desired product as a white solid (0.1004 g, 0.2865 mmol, 72%).

Rf = 0.40 (hexane:AcOEt = 3:1).

m.p.: 97.9 °C.

<sup>1</sup>H NMR:  $\delta$  0.84 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H), 2.60 (sept, J = 6.6 Hz, 1H), 2.71 (t, J = 6.9 Hz, 2H), 2.85 (dt, J = 14.1, 7.8 Hz, 1H), 2.92 (dt, J = 14.4, 7.8 Hz, 1H), 4.97 (brs, 1H), 6.71-6.78 (m, 2H), 6.89 (d, J = 8.4 Hz, 2H), 7.07-7.13 (m, 2H) 7.14-7.26 (m, 3H).

<sup>13</sup>C NMR: δ 18.7, 19.4, 30.0, 33.5, 41.9, 68.1 (q, *J* = 22.9 Hz), 115.7, 126.1, 126.9 (q, *J* = 290.8 Hz), 127.0, 128.3, 128.5, 128.8, 140.5, 155.0, 203.3.

<sup>19</sup>F NMR: δ –69.65 (s).

IR (KBr) v 3421, 3029, 2991, 2945, 1707, 1606, 1516, 1448, 1274, 1126 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>O<sub>2</sub>, 351.1572; Found, 351.1586.

#### Synthetic application of 3a

(1R\*, 2S\*)-3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (6aa-major)



Reduction with DIBAL

To a two-necked round-bottomed flask were added **3aa** (0.1177 g, 0.4000 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (10 mL), where DIBAL (a 1.0 *M* hexane solution, 1.2 mL, 1.2 mmol, 3.0 eq.) was introduced slowly at – 80 °C, and the mixture was stirred for 3 h at the same temperature. The reaction mixture was quenched with 1 *M* HCl aq. and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. After usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 2:1) to successfully separate the desired stereoisomeric products both as a white solid (major product (0.0599 g, 0.202 mmol, 50%), minor product (0.0265 g, 0.089 mmol, 22%) ).

#### Reduction with BuLi (GP2)

To a two-necked round-bottomed flask were added **3aa** (0.1177 g, 0.4000 mmol) and Et<sub>2</sub>O (4 mL), where BuLi (a 2.80 *M* hexane solution, 0.42 mL, 1.18 mmol, 1.2 eq.) was introduced slowly at -80 °C, and the mixture was stirred for 1 h at the same temperature. Then, the mixture was warmed up to 30 °C. After stirring for 1 h at the same temperature, the reaction mixture was quenched with sat. NH<sub>4</sub>Cl aq. and extracted with AcOEt three times. After usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 2:1) to stereospecifically give the desired product (the same as the major compound of the DIBAL reduction) as a white solid (0.0863 g, 0.291 mmol, 73%).

The major compound

Rf = 0.30 (hexane:AcOEt = 2:1).

m.p.: 132.3 °C.

<sup>1</sup>H NMR: δ 1.45 (s, 3H), 1.90 (s, 1H), 5.00 (brs, 1H), 5.31 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 2H), 7.18-7.19 (m, 2H), 7.28-7.30 (m, 3H), 7.52 (d, *J* = 8.7 Hz, 2H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>) : δ 16.4 (q, *J* = 2.5 Hz), 52.7 (q, *J* = 21.7 Hz), 76.9, 115.3, 127.8, 128.0. 128.3, 129.2, 131.03, 131.01 (q, *J* = 284.3 Hz) 141.9, 157.8.

<sup>19</sup>F NMR: δ –69.95 (s).

IR (KBr) v 3391, 3275, 3034, 2964, 2930, 1685, 1614, 1516, 1267, 1162 cm<sup>-1</sup>. HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>15</sub>F<sub>3</sub>O<sub>2</sub>, 296.1024; Found, 296.1003.

(1S\*, 2S\*)-3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (6aa-minor)

OH H OH

Rf = 0.40 (hexane:AcOEt = 2:1). m.p.: 127.4 °C. <sup>1</sup>H NMR: δ 1.50 (s, 3H), 2.22 (d, *J* = 3.3 Hz, 1H), 4.85 (brs, 1H), 5.45 (d, *J* = 3.0 Hz, 1H), 6.73-6.78 (m, 2H), 6.87 (d, J = 6.6 Hz, 2H), 7.07-7.15 (m, 3H), 7.19 (d, J = 8.7 Hz, 2H). <sup>13</sup>C NMR (acetone- $d_6$ ) :  $\delta$  12.6 (q, J = 3.1 Hz), 53.4 (q, J = 22.4 Hz), 76.9, 115.6, 127.6, 127.7. 128.6, 129.1, 129.6 (q, J = 285.6 Hz), 129.8 (q, J = 1.9 Hz), 141.5, 157.7. <sup>19</sup>F NMR:  $\delta$  –68.56 (s) IR (KBr) v 3510, 3297, 3035, 2941, 2902, 1610, 1596, 1516, 1261, 1147 cm<sup>-1</sup>. HRMS (FAB+, m/z): [M]<sup>-</sup> Calcd for C<sub>16</sub>H<sub>15</sub>F<sub>3</sub>O<sub>2</sub>, 296.1024; Found, 296.1011.

#### (2R\*, 3S\*)-4,4,4-Trifluoro-2-(4-hydroxyphenyl)-2,3-dimethyl-1-pheny1butanol (7aa)



Following to **GP2**, MeLi-LiBr (a 3.0 M Et<sub>2</sub>O solution, 0.40 mL, 1.2 mmol, 3.0 eq.) was used instead of BuLi. The mixture was purified by column chromatography (hexane:AcOEt = 2:1) to give a product as a solid with some contamination, and washing with hexane gave the desired product as a white solid basically as a pure condition (0.1013 g, 0.3264 mmol, 82%).

Rf = 0.37 (hexane:AcOEt = 2:1).

m.p.: 138.6 °C.

<sup>1</sup>H NMR: δ 1.48 (s, 3H), 1.83 (q, *J* = 1.5 Hz, 3H), 2.07 (s, 1H), 4.92 (brs, 1H), 6.70-6.76 (m, 2H), 7.01-7.05 (m, 2H), 7.17-7.26 (m, 5H).

<sup>13</sup>C NMR: δ 18.3 (q, *J* = 3.7 Hz), 27.3 (q, *J* = 2.5 Hz), 56.3 (q, *J* = 21.2 Hz), 77.1, 114.5, 127.2, 127.3, 128.5, 129.9 (q, *J* = 286.3 Hz), 131.5 (q, *J* = 1.8 Hz), 146.2, 157.3.

<sup>19</sup>F NMR: δ –63.18 (s).

IR (KBr) v 3468, 3327, 3079, 3015, 2987, 1614, 1590, 1517, 1169, 1144 cm<sup>-1</sup>.

HRMS (FAB-, *m/z*): [M-H]<sup>-</sup> Calcd for C<sub>17</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub>, 309.1102; Found, 309.1074.

#### (2S\*, 3R\*)-1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2,3-dimethyl-5-phenyl-3-pentanol (7aq)



Following to **GP2**, MeLi-LiBr (a 3.0 *M* Et<sub>2</sub>O solution, 0.40 ml, 1.2 mmol, 3.0 eq.) and **3aq** (0.1289 g, 0.3999 mmol) were used instead of BuLi and **3aa** to afford the desired product as a white solid (0.0568 g, 0.168 mmol, 42%).

Moreover, **3aq** was recovered (0.0621 g, 0.193 mmol, 48%).

Rf = 0.20 (hexane:AcOEt = 2:1).

m.p.: 119.6 °C.

<sup>1</sup>H NMR: δ 1.39 (s, 3H), 1.45 (s, 1H), 1.62 (s, 3H), 2.56-2.75 (m, 2H), 6.82 (d, J = 9.0 Hz, 2 H), 7.04-7.08 (m, 4H), 7.14-7.26 (m, 3H). 7.45 (d, J = 8.1 Hz, 2 H) <sup>13</sup>C NMR: δ 17.3 (q, J = 0.8 Hz), 23.1 (q, J = 2.5 Hz), 29.8, 38.9 (q, J = 1.8 Hz), 56.2 (q, J = 21.8 Hz), 75.5, 114.9, 125.8, 127.3, 128.5, 128.7 (q, J = 286.3 Hz), 130.3, 130.6, 142.2, 155.0. <sup>19</sup>F NMR: δ -63.18 (s).

IR (KBr) v 3605, 3363, 3032, 2975, 2928, 1612, 1515, 1455, 1254, 1144 cm<sup>-1</sup>. HRMS (FAB-, *m/z*): [M]<sup>-</sup> Calcd for C<sub>19</sub>H<sub>21</sub>F<sub>3</sub>O<sub>2</sub>, 333.1494; Found, 333.1497.

3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1,1-dipheny-1-propanol (8aa) (GP3)



To a two-necked round-bottomed flask were added bromobenzene (0.2071 g, 1.319 mmol, 3.3 eq.) and Et<sub>2</sub>O (1.2 mL), where BuLi (a 2.80 *M* hexane solution, 0.42 mL, 1.2 mmol, 3.0 eq.) was introduced slowly at 0 °C, and the mixture was stirred for 1 h at the same temperature. To this mixture was added a solution of **1a** (0.1178 g, 0.4003 mmol) in Et<sub>2</sub>O (2.8 mL) via a syringe at -80 °C and the mixture was stirred for 1 h at the same temperature up to 30 °C. After, stirring for 2 h at the same temperature and the reaction mixture was quenched with sat. NH<sub>4</sub>Cl aq. and extracted with AcOEt three times. After usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 2:1) to give the desired product as a colorless oil (0.1057 g, 0.2838 mmol, 71%).

Rf = 0.37 (hexane:AcOEt = 2:1).

m.p.: 146.6 °C.

<sup>1</sup>H NMR: δ 1.73 (s, 3H), 2.92 (s, 1H), 4.84 (s, 1H), 6.67-6.72 (m, 2H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.16-7.19 (m, 2H), 7.26-7.33 (m, 6H), 7.46-7.50 (m, 2H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 19.6, 57.9 (q, *J* = 21.1 Hz), 82.6, 114.6, 127.2, 127.4, 127.6, 127.8, 128.8, 129.4 (q, *J* = 285.2 Hz), 130.0, 132.4, 145.2, 146.2, 157.6.

<sup>19</sup>F NMR:  $\delta$  –63.23 (s).

IR (KBr) v 3538, 3391, 3072, 3032, 2972, 1605, 1514, 1441, 1253, 1160 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>19</sub>F<sub>3</sub>O<sub>2</sub>, 372.1337; Found, 372.1360.

(1*S*\*, 2*S*\*)-1-(4-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (9aa)



Following to **GP3**, 1-bromo-4-chlorobenzene (0.2529 g, 1.321 mmol, 3.3 eq.) was used instead of bromobenzene and the reaction mixture was stirred -80 °C for 1 h and then, the mixture was warmed up to 0 °C and stirred for 4 h at the same temperature to afford the desired product as a white solid (0.1336 g, 0.3370 mmol, 84%). Rf = 0.20 (hexane:AcOEt = 4:1).

m.p.: 117.7 °C.

<sup>1</sup>H NMR: δ 1.72 (s, 3H), 2.91 (s, 1H), 4.83 (brs, 1H), 6.71 (d, *J* = 9.0 Hz, 2H), 7.12 (d, *J* = 9.0 Hz, 2H), 7.17-7.29 (m, 7H), 7.41 (d, *J* = 8.7 Hz, 2H).

<sup>13</sup>C NMR: δ 19.4, 57.0 (q, *J* = 21.7 Hz), 81.4, 114.3,127.2, 127.4, 127.5, 128.1 (q, *J* = 287.0 Hz), 128.4, 128.6, 129.5, 131.5, 133.2, 142.3, 143.1, 155.1.

<sup>19</sup>F NMR:  $\delta$  –63.32 (s).

IR (KBr) v 3565, 3392, 3064, 3041, 3015, 1652, 1591, 1516, 1281, 1000 cm<sup>-1</sup>.

HRMS (FAB-, *m/z*): [M-H]<sup>-</sup> Calcd for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>O<sub>2</sub>Cl, 405.0869; Found, 405.0842.

#### (3S\*, 4S\*)-5,5,5-Trifluoro-4-(4-hydroxyphenyl)-4-methyl-3-phenyl-1-phenylpent-1-yn-3-ol (10aa)



Following to **GP3**, ethynylbenzene (0.1298 g, 1.271 mmol, 3.2 eq.) was used instead of bromobenzene to afford the desired product as a pale brown oil as an inseparable diastereomeric mixture (0.1336 g, 0.3370 mmol, dr = 92:8, 84%).

Rf = 0.33 (hexane:AcOEt = 2:1).

The major compound

<sup>1</sup>H NMR: δ 1.74 (s, 3H), 2.92 (s, 1H), 4.85 (s, 1H), 6.67-6.72 (m, 2H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.16-7.19 (m, 2H), 7.25-7.33 (m, 6H), 7.46-7.50 (m, 2H).

<sup>13</sup>C NMR (acetone-*d*<sub>6</sub>): δ 18.5 (q, J = 2.3 Hz), 57.0 (q, J = 21.8 Hz), 76.8, 87.6, 92.1, 114.6, 123.5, 127.2, 128.3, 129.1,129.2 (q, J = 280.1 Hz) 129.3, 129.4, 130.4, 131.8, 132.1, 142.5, 157.7. <sup>19</sup>F NMR: δ –64.16 (s). The minor compound <sup>19</sup>F NMR: δ –63.78 (s). IR (CHCl<sub>3</sub>) v 3585, 3393, 3088, 3036, 3008, 1615, 1597, 1517, 1267, 1152 cm<sup>-1</sup>. HRMS (FAB–, *m/z*): [M–H]<sup>-</sup> Calcd for C<sub>24</sub>H<sub>18</sub>F<sub>3</sub>O<sub>2</sub>, 395.1259; Found, 395.1269.

(3*S*\*, 4*S*\*)-*tert*-Butyl 5,5,5-trifluoro-3-hydroxyl-4-(4-hydroxyphenyl)-4-methyl-3-phenylpentanoate (11aa)



A solution of **3aa** (0.1177 g, 0.4000 mmol) in THF (2 mL) was added to a mixture containing the enolate from *t*-butyl acetate (0.1559 g, 1.342 mmol, 3.4 eq.) and LDA (prepared from diisopropylamine (0.19 mL, 1.3 mmol, 3.4 eq.) and BuLi (a 2.80 *M* hexane solution, 0.43 mL, 1.2 mmol, 3.0 eq.)) in THF (2 mL) at -80 °C for 1 h), and then the mixture was stirred for 1 h at that temperature. Then, the mixture was warmed up to 30 °C and stirring was continued for 2 h at the same temperature. After quenching with sat. NH<sub>4</sub>Cl aq., the reaction mixture was extracted with AcOEt three times. After usual workup, the crude product was purified by column chromatography (hexane:AcOEt = 2:1) to give the desired product as a pale brown oil as an inseparable diastereomeric mixture (0.1416 g, 0.3450 mmol, *dr* = 93:7, 86%).

Rf = 0.40 (hexane:AcOEt = 2:1).

The major compound

<sup>1</sup>H NMR: δ 1.14 (s, 9H), 1.56 (s, 3H), 1.60 (s, 1H), 2.75 (d, *J* = 15.6 Hz, 1H), 3.36 (d, *J* = 15.6 Hz, 1H) 4.80 (s, 1H), 6.73 (d, *J* = 9.0 Hz, 2H), 7.18 (s, 5H), 7.29 (d, *J* = 9.3 Hz, 2H).

<sup>13</sup>C NMR: δ 17.2 (q, *J* = 3.7 Hz), 27.5, 43.4, 55.9 (q, *J* = 21.7 Hz), 77.7, 82.5, 114.0, 127.0, 127.3, 127.8, 128.0, 128.2 (q, *J* = 286.3 Hz), 130.8, 142.0, 155.0, 172.3.

<sup>19</sup>F NMR:  $\delta$  –63.00 (s).

The minor compound

<sup>19</sup>F NMR:  $\delta$  –62.81 (s).

IR (CHCl<sub>3</sub>) v 3592, 3436, 3025, 3010, 2982, 1704, 1616, 1518, 1256, 1152 cm<sup>-1</sup>.

HRMS (FAB+, *m/z*): [M]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>26</sub>F<sub>3</sub>O<sub>4</sub>, 411.1783; Found, 411.1788.

(1R\*, 2S\*)-3,3,3-Trifluoro-2-methyl-1-pheny-2-[4-{(toluenesulfonyl)oxy}phenyl]-1-propanol (12aa)



To a test tube under an argon atmosphere were introduced **6aa** (0.0561g, 0.189 mmol), DMAP (0.0269 g, 0.220 mmol, 1.2 eq.), and 4.0 mL of  $CH_2Cl_2$ , where TsCl (0.0420 g, 0.220 mmol, 1.2 eq.) was added at 0 °C. This reaction mixture was stirred for 3 h at 30 °C. After quenching with sat. NH<sub>4</sub>Cl aq., the reaction mixture was extracted three times with the mixture of  $CH_2Cl_2$  and the combined organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration, evaporation of the volatiles afforded a crude material which was purified by silica gel column chromatography using AcOEt:hexane = 2:1 to furnish 0.0685 g (0.152 mmol) of the desired product **12aa** in 80% yield as a white solid. m.p.: 131.8 °C.

<sup>1</sup>H NMR: δ 1.44 (s, 3H), 1.92 (d, *J* = 3.0 Hz, 1H), 2.47 (s, 3H), 5.27 (d, *J* = 3.0 Hz, 1H), 7.02 (d, *J* = 9.0 Hz, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 7.24-7.29 (m, 3H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 9.0 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H).

<sup>13</sup>C NMR: δ 15.7 (q, *J* = 2.6 Hz), 21.7, 52.6 (q, *J* = 23.0 Hz), 76.4, 121.8, 127.4 (q, *J* = 282.8 Hz), 127.7, 127.9, 128.3, 128.4, 129.7, 130.1, 132.2, 134.7, 138.9, 145.5, 149.3.

<sup>19</sup>F NMR: δ –69.85 (s).

IR (KBr) v 3570, 3066, 2990, 2900, 1920, 1597, 1505, 1368, 1186, 1159 cm<sup>-1</sup>.

HRMS (FAB-, *m/z*): [M]<sup>-</sup> Calcd for C<sub>23</sub>H<sub>21</sub>F<sub>3</sub>O<sub>4</sub>S, 450.1113; Found, 450.1124.

# X-Ray crystallographic data of the compounds



| Table 1. Crystal data and structure refinement for C:. |                               |                        |  |
|--------------------------------------------------------|-------------------------------|------------------------|--|
| Identification code                                    | 3bq                           |                        |  |
| Empirical formula                                      | C20 H21 F3 O2                 |                        |  |
| Formula weight                                         | 350.37                        |                        |  |
| Temperature                                            | 173(2) K                      |                        |  |
| Wavelength                                             | $0.71073~{\rm \AA}$           |                        |  |
| Crystal system                                         | Monoclinic                    |                        |  |
| Space group                                            | P21/n                         |                        |  |
| Unit cell dimensions                                   | a = 10.8717(3)  Å             | α= 90°.                |  |
|                                                        | b = 10.7087(3)  Å             | β= 95.029(2)°.         |  |
|                                                        | c = 15.1761(4)  Å             | $\gamma = 90^{\circ}.$ |  |
| Volume                                                 | 1760.03(8) Å <sup>3</sup>     |                        |  |
| Z                                                      | 4                             |                        |  |
| Density (calculated)                                   | $1.322 \mathrm{~Mg/m^3}$      |                        |  |
| Absorption coefficient                                 | $0.105 \text{ mm}^{-1}$       |                        |  |
| F(000)                                                 | 736                           |                        |  |
| Crystal size                                           | 0.130 x 0.130 x 0.110 x       | mm <sup>3</sup>        |  |
| Theta range for data collection                        | $2.675$ to $25.490^{\circ}$ . |                        |  |

Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole -13<=h<=13, -12<=k<=12, -18<=l<=18 20387 3265 [R(int) = 0.0239] 99.8 % Semi-empirical from equivalents 1.00000 and 0.75069 Full-matrix least-squares on F<sup>2</sup> 3265 / 0 / 228 1.013 R1 = 0.0339, wR2 = 0.0890 R1 = 0.0365, wR2 = 0.0915 n/a 0.272 and -0.186 e.Å<sup>-3</sup>

| Table 2.  | Atomic coordinates                     | ( x 10 <sup>4</sup> ) and equivalent | isotropic displacement |
|-----------|----------------------------------------|--------------------------------------|------------------------|
| parameter | rs (Å <sup>2</sup> x 10 <sup>3</sup> ) |                                      |                        |

|       | х       | У       | Z       | U(eq) |
|-------|---------|---------|---------|-------|
| C(1)  | 1098(1) | 5434(2) | 4268(1) | 46(1) |
| C(2)  | 1994(1) | 5863(2) | 3635(1) | 38(1) |
| C(3)  | 3170(1) | 6427(1) | 4092(1) | 25(1) |
| C(4)  | 4175(1) | 6835(1) | 3480(1) | 21(1) |
| C(5)  | 3755(1) | 8004(1) | 2951(1) | 28(1) |
| F(1)  | 4603(1) | 8399(1) | 2425(1) | 38(1) |
| F(2)  | 3546(1) | 8959(1) | 3488(1) | 42(1) |
| F(3)  | 2704(1) | 7848(1) | 2424(1) | 37(1) |
| C(6)  | 5402(1) | 7168(1) | 4012(1) | 21(1) |
| C(7)  | 6521(1) | 7002(1) | 3640(1) | 24(1) |
| C(8)  | 7636(1) | 7303(1) | 4103(1) | 27(1) |
| C(9)  | 7651(1) | 7807(1) | 4950(1) | 27(1) |
| C(10) | 6547(1) | 8007(1) | 5322(1) | 28(1) |
| C(11) | 5435(1) | 7683(1) | 4857(1) | 25(1) |
| O(1)  | 8777(1) | 8101(1) | 5364(1) | 40(1) |
| C(12) | 4378(1) | 5740(1) | 2845(1) | 22(1) |
| O(2)  | 4123(1) | 5817(1) | 2053(1) | 31(1) |
| C(13) | 4892(1) | 4543(1) | 3256(1) | 24(1) |
| C(14) | 5548(1) | 3745(1) | 2601(1) | 30(1) |
| C(15) | 6337(1) | 2742(1) | 3063(1) | 25(1) |
| C(16) | 5938(1) | 1512(1) | 3106(1) | 30(1) |
| C(17) | 6664(1) | 610(1)  | 3556(1) | 38(1) |
| C(18) | 7807(1) | 926(1)  | 3965(1) | 38(1) |
| C(19) | 8223(1) | 2142(1) | 3919(1) | 37(1) |
| C(20) | 7493(1) | 3043(1) | 3475(1) | 32(1) |

for C:. U(eq) is defined as one third of  $\;$  the trace of the orthogonalized  $U^{ij}$  tensor.

| C(1)-C(2)   | 1.499(2)   |
|-------------|------------|
| C(1)-H(1)   | 0.9800     |
| C(1)-H(2)   | 0.9800     |
| C(1)-H(3)   | 0.9800     |
| C(2)-C(3)   | 1.5249(17) |
| C(2)-H(4)   | 0.9900     |
| C(2)-H(5)   | 0.9900     |
| C(3)-C(4)   | 1.5583(16) |
| C(3)-H(6)   | 0.9900     |
| C(3)-H(7)   | 0.9900     |
| C(4)-C(5)   | 1.5343(16) |
| C(4)-C(6)   | 1.5394(15) |
| C(4)-C(12)  | 1.5464(16) |
| C(5)-F(1)   | 1.3392(16) |
| C(5)-F(2)   | 1.3405(15) |
| C(5)-F(3)   | 1.3458(14) |
| C(6)-C(11)  | 1.3937(16) |
| C(6)-C(7)   | 1.3962(17) |
| C(7)-C(8)   | 1.3851(17) |
| C(7)-H(8)   | 0.9500     |
| C(8)-C(9)   | 1.3921(18) |
| C(8)-H(9)   | 0.9500     |
| C(9)-O(1)   | 1.3628(15) |
| C(9)-C(10)  | 1.3871(19) |
| C(10)-C(11) | 1.3897(18) |
| C(10)-H(10) | 0.9500     |
| C(11)-H(11) | 0.9500     |
| O(1)-H(12)  | 0.8400     |
| C(12)-O(2)  | 1.2120(14) |
| C(12)-C(13) | 1.5105(16) |
| C(13)-C(14) | 1.5328(17) |
| C(13)-H(13) | 0.9900     |
| C(13)-H(14) | 0.9900     |
| C(14)-C(15) | 1.5088(17) |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for C:.

\_\_\_\_\_

| C(14)-H(15)     | 0.9900     |
|-----------------|------------|
| C(14)-H(16)     | 0.9900     |
| C(15)-C(16)     | 1.3903(19) |
| C(15)-C(20)     | 1.3913(18) |
| C(16)-C(17)     | 1.388(2)   |
| C(16)-H(17)     | 0.9500     |
| C(17)-C(18)     | 1.382(2)   |
| C(17)-H(18)     | 0.9500     |
| C(18)-C(19)     | 1.382(2)   |
| C(18)-H(19)     | 0.9500     |
| C(19)-C(20)     | 1.386(2)   |
| C(19)-H(20)     | 0.9500     |
| C(20)-H(21)     | 0.9500     |
|                 |            |
| C(2)-C(1)-H(1)  | 109.5      |
| C(2)-C(1)-H(2)  | 109.5      |
| H(1)-C(1)-H(2)  | 109.5      |
| C(2)-C(1)-H(3)  | 109.5      |
| H(1)-C(1)-H(3)  | 109.5      |
| H(2)-C(1)-H(3)  | 109.5      |
| C(1)-C(2)-C(3)  | 113.32(12) |
| C(1)-C(2)-H(4)  | 108.9      |
| C(3)-C(2)-H(4)  | 108.9      |
| C(1)-C(2)-H(5)  | 108.9      |
| C(3)-C(2)-H(5)  | 108.9      |
| H(4)-C(2)-H(5)  | 107.7      |
| C(2)-C(3)-C(4)  | 116.37(10) |
| C(2)-C(3)-H(6)  | 108.2      |
| C(4)-C(3)-H(6)  | 108.2      |
| C(2)-C(3)-H(7)  | 108.2      |
| C(4)-C(3)-H(7)  | 108.2      |
| H(6)-C(3)-H(7)  | 107.3      |
| C(5)-C(4)-C(6)  | 106.90(9)  |
| C(5)-C(4)-C(12) | 110.16(9)  |
| C(6)-C(4)-C(12) | 109.79(9)  |
| C(5)-C(4)-C(3)  | 110.39(10) |

| C(6)-C(4)-C(3)    | 111.90(9)  |
|-------------------|------------|
| C(12)-C(4)-C(3)   | 107.72(9)  |
| F(1)-C(5)-F(2)    | 106.44(10) |
| F(1)-C(5)-F(3)    | 106.16(10) |
| F(2)-C(5)-F(3)    | 105.97(10) |
| F(1)-C(5)-C(4)    | 112.37(10) |
| F(2)-C(5)-C(4)    | 111.27(10) |
| F(3)-C(5)-C(4)    | 114.09(10) |
| C(11)-C(6)-C(7)   | 118.02(11) |
| C(11)-C(6)-C(4)   | 121.69(10) |
| C(7)-C(6)-C(4)    | 120.25(10) |
| C(8)-C(7)-C(6)    | 121.31(11) |
| C(8)-C(7)-H(8)    | 119.3      |
| C(6)-C(7)-H(8)    | 119.3      |
| C(7)-C(8)-C(9)    | 119.84(11) |
| C(7)-C(8)-H(9)    | 120.1      |
| C(9)-C(8)-H(9)    | 120.1      |
| O(1)-C(9)-C(10)   | 123.39(11) |
| O(1)-C(9)-C(8)    | 116.91(11) |
| C(10)-C(9)-C(8)   | 119.69(11) |
| C(9)-C(10)-C(11)  | 119.99(11) |
| C(9)-C(10)-H(10)  | 120.0      |
| C(11)-C(10)-H(10) | 120.0      |
| C(10)-C(11)-C(6)  | 121.12(11) |
| C(10)-C(11)-H(11) | 119.4      |
| C(6)-C(11)-H(11)  | 119.4      |
| C(9)-O(1)-H(12)   | 109.5      |
| O(2)-C(12)-C(13)  | 120.79(11) |
| O(2)-C(12)-C(4)   | 122.20(11) |
| C(13)-C(12)-C(4)  | 117.00(9)  |
| C(12)-C(13)-C(14) | 112.42(10) |
| C(12)-C(13)-H(13) | 109.1      |
| C(14)-C(13)-H(13) | 109.1      |
| C(12)-C(13)-H(14) | 109.1      |
| C(14)-C(13)-H(14) | 109.1      |
| H(13)-C(13)-H(14) | 107.9      |

| C(15)-C(14)-C(13) | 111.94(10) |
|-------------------|------------|
| C(15)-C(14)-H(15) | 109.2      |
| C(13)-C(14)-H(15) | 109.2      |
| C(15)-C(14)-H(16) | 109.2      |
| C(13)-C(14)-H(16) | 109.2      |
| H(15)-C(14)-H(16) | 107.9      |
| C(16)-C(15)-C(20) | 118.13(12) |
| C(16)-C(15)-C(14) | 121.98(12) |
| C(20)-C(15)-C(14) | 119.88(12) |
| C(17)-C(16)-C(15) | 121.08(12) |
| C(17)-C(16)-H(17) | 119.5      |
| C(15)-C(16)-H(17) | 119.5      |
| C(18)-C(17)-C(16) | 120.04(13) |
| C(18)-C(17)-H(18) | 120.0      |
| C(16)-C(17)-H(18) | 120.0      |
| C(17)-C(18)-C(19) | 119.57(13) |
| C(17)-C(18)-H(19) | 120.2      |
| C(19)-C(18)-H(19) | 120.2      |
| C(18)-C(19)-C(20) | 120.27(13) |
| C(18)-C(19)-H(20) | 119.9      |
| C(20)-C(19)-H(20) | 119.9      |
| C(19)-C(20)-C(15) | 120.90(13) |
| C(19)-C(20)-H(21) | 119.5      |
| C(15)-C(20)-H(21) | 119.5      |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

|       | U <sup>11</sup> | $\mathrm{U}^{22}$ | $U^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
|-------|-----------------|-------------------|----------|-------------------|-------------------|-------------------|
| C(1)  | 35(1)           | 59(1)             | 45(1)    | -8(1)             | 9(1)              | -16(1)            |
| C(2)  | 28(1)           | 55(1)             | 33(1)    | -6(1)             | 2(1)              | -11(1)            |
| C(3)  | 22(1)           | 30(1)             | 22(1)    | -2(1)             | 2(1)              | 1(1)              |
| C(4)  | 21(1)           | 23(1)             | 19(1)    | 1(1)              | -2(1)             | 2(1)              |
| C(5)  | 28(1)           | 27(1)             | 28(1)    | 1(1)              | -5(1)             | 3(1)              |
| F(1)  | 38(1)           | 36(1)             | 38(1)    | 17(1)             | -1(1)             | -1(1)             |
| F(2)  | 54(1)           | 27(1)             | 44(1)    | -4(1)             | -7(1)             | 14(1)             |
| F(3)  | 31(1)           | 37(1)             | 40(1)    | 7(1)              | -14(1)            | 6(1)              |
| C(6)  | 23(1)           | 21(1)             | 18(1)    | 2(1)              | -2(1)             | 1(1)              |
| C(7)  | 26(1)           | 27(1)             | 18(1)    | 0(1)              | 0(1)              | 1(1)              |
| C(8)  | 22(1)           | 35(1)             | 23(1)    | -1(1)             | 1(1)              | 1(1)              |
| C(9)  | 25(1)           | 33(1)             | 22(1)    | 1(1)              | -6(1)             | -2(1)             |
| C(10) | 32(1)           | 34(1)             | 18(1)    | -4(1)             | -1(1)             | 0(1)              |
| C(11) | 25(1)           | 30(1)             | 21(1)    | -1(1)             | 2(1)              | 2(1)              |
| O(1)  | 25(1)           | 64(1)             | 28(1)    | -12(1)            | -7(1)             | -4(1)             |
| C(12) | 17(1)           | 27(1)             | 20(1)    | 1(1)              | 0(1)              | -1(1)             |
| O(2)  | 36(1)           | 36(1)             | 18(1)    | 0(1)              | -5(1)             | 6(1)              |
| C(13) | 27(1)           | 24(1)             | 20(1)    | 1(1)              | 2(1)              | 1(1)              |
| C(14) | 35(1)           | 31(1)             | 23(1)    | 0(1)              | 3(1)              | 8(1)              |
| C(15) | 26(1)           | 30(1)             | 20(1)    | -3(1)             | 6(1)              | 5(1)              |
| C(16) | 28(1)           | 32(1)             | 31(1)    | -4(1)             | 1(1)              | 0(1)              |
| C(17) | 43(1)           | 28(1)             | 42(1)    | 1(1)              | 3(1)              | 4(1)              |
| C(18) | 41(1)           | 40(1)             | 31(1)    | 0(1)              | -1(1)             | 18(1)             |
| C(19) | 26(1)           | 50(1)             | 34(1)    | -12(1)            | -3(1)             | 8(1)              |
| C(20) | 30(1)           | 32(1)             | 35(1)    | -7(1)             | 4(1)              | -1(1)             |

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for C:. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

|       | X    | У    | Z    | U(eq) |
|-------|------|------|------|-------|
|       |      |      |      |       |
| H(1)  | 1500 | 4821 | 4678 | 69    |
| H(2)  | 381  | 5049 | 3938 | 69    |
| H(3)  | 828  | 6151 | 4603 | 69    |
| H(4)  | 1585 | 6493 | 3232 | 46    |
| H(5)  | 2218 | 5144 | 3272 | 46    |
| H(6)  | 3542 | 5809 | 4521 | 30    |
| H(7)  | 2938 | 7166 | 4433 | 30    |
| H(8)  | 6517 | 6676 | 3058 | 28    |
| H(9)  | 8389 | 7167 | 3844 | 32    |
| H(10) | 6552 | 8366 | 5895 | 34    |
| H(11) | 4684 | 7815 | 5120 | 30    |
| H(12) | 8686 | 8395 | 5867 | 60    |
| H(13) | 4209 | 4053 | 3475 | 28    |
| H(14) | 5482 | 4749 | 3769 | 28    |
| H(15) | 4923 | 3351 | 2175 | 36    |
| H(16) | 6073 | 4290 | 2264 | 36    |
| H(17) | 5156 | 1285 | 2823 | 36    |
| H(18) | 6374 | -225 | 3583 | 45    |
| H(19) | 8304 | 311  | 4276 | 45    |
| H(20) | 9012 | 2361 | 4194 | 45    |
| H(21) | 7786 | 3877 | 3451 | 39    |
|       |      |      |      |       |

Table 5. Hydrogen coordinates ( x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10  $^{3}$ )

for C:.

Table 6. Torsion angles [°] for C:.

| C(1)-C(2)-C(3)-C(4)             | 177.06(13)  |
|---------------------------------|-------------|
| C(2)-C(3)-C(4)-C(5)             | 71.32(14)   |
| C(2)-C(3)-C(4)-C(6)             | -169.76(11) |
| C(2)- $C(3)$ - $C(4)$ - $C(12)$ | -49.00(14)  |
| C(6)-C(4)-C(5)-F(1)             | 57.06(13)   |
| C(12)-C(4)-C(5)-F(1)            | -62.18(13)  |
| C(3)-C(4)-C(5)-F(1)             | 178.98(10)  |
| C(6)-C(4)-C(5)-F(2)             | -62.20(13)  |
| C(12)-C(4)-C(5)-F(2)            | 178.57(10)  |
| C(3)-C(4)-C(5)-F(2)             | 59.73(13)   |
| C(6)-C(4)-C(5)-F(3)             | 177.97(10)  |
| C(12)-C(4)-C(5)-F(3)            | 58.74(13)   |
| C(3)-C(4)-C(5)-F(3)             | -60.10(13)  |
| C(5)-C(4)-C(6)-C(11)            | 89.21(13)   |
| C(12)-C(4)-C(6)-C(11)           | -151.32(11) |
| C(3)-C(4)-C(6)-C(11)            | -31.76(15)  |
| C(5)-C(4)-C(6)-C(7)             | -88.32(13)  |
| C(12)-C(4)-C(6)-C(7)            | 31.15(14)   |
| C(3)-C(4)-C(6)-C(7)             | 150.71(11)  |
| C(11)-C(6)-C(7)-C(8)            | 1.87(18)    |
| C(4)-C(6)-C(7)-C(8)             | 179.49(11)  |
| C(6)-C(7)-C(8)-C(9)             | -1.38(19)   |
| C(7)-C(8)-C(9)-O(1)             | -179.05(12) |
| C(7)-C(8)-C(9)-C(10)            | -0.2(2)     |
| O(1)-C(9)-C(10)-C(11)           | 180.00(12)  |
| C(8)-C(9)-C(10)-C(11)           | 1.2(2)      |
| C(9)-C(10)-C(11)-C(6)           | -0.7(2)     |
| C(7)-C(6)-C(11)-C(10)           | -0.83(18)   |
| C(4)-C(6)-C(11)-C(10)           | -178.41(11) |
| C(5)-C(4)-C(12)-O(2)            | -5.75(15)   |
| C(6)-C(4)-C(12)-O(2)            | -123.21(12) |
| C(3)-C(4)-C(12)-O(2)            | 114.71(12)  |
| C(5)-C(4)-C(12)-C(13)           | 175.29(10)  |
| C(6)-C(4)-C(12)-C(13)           | 57.83(13)   |

\_

| C(3)-C(4)-C(12)-C(13)   | -64.25(12)  |
|-------------------------|-------------|
| O(2)-C(12)-C(13)-C(14)  | 24.88(16)   |
| C(4)-C(12)-C(13)-C(14)  | -156.15(10) |
| C(12)-C(13)-C(14)-C(15) | 164.96(10)  |
| C(13)-C(14)-C(15)-C(16) | 99.89(14)   |
| C(13)-C(14)-C(15)-C(20) | -79.07(15)  |
| C(20)-C(15)-C(16)-C(17) | 0.81(19)    |
| C(14)-C(15)-C(16)-C(17) | -178.17(12) |
| C(15)-C(16)-C(17)-C(18) | -0.5(2)     |
| C(16)-C(17)-C(18)-C(19) | -0.3(2)     |
| C(17)-C(18)-C(19)-C(20) | 0.7(2)      |
| C(18)-C(19)-C(20)-C(15) | -0.4(2)     |
| C(16)-C(15)-C(20)-C(19) | -0.38(19)   |
| C(14)-C(15)-C(20)-C(19) | 178.62(12)  |
|                         |             |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for C: [Å and °].

| D-HA             | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|------------------|--------|-------|------------|--------|
| O(1)-H(12)O(2)#1 | 0.84   | 2.01  | 2.8083(13) | 159.3  |

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+3/2,z+1/2



Table 1. Crystal data and structure refinement for C:.

| Identification code             | 12aa                          |                                    |  |  |  |
|---------------------------------|-------------------------------|------------------------------------|--|--|--|
| Empirical formula               | $\rm C23~H21~F3~O4~S$         | C23 H21 F3 O4 S                    |  |  |  |
| Formula weight                  | 450.46                        | 450.46                             |  |  |  |
| Temperature                     | 173(2) K                      |                                    |  |  |  |
| Wavelength                      | $0.71073~{\rm \AA}$           |                                    |  |  |  |
| Crystal system                  | Monoclinic                    |                                    |  |  |  |
| Space group                     | P21/n                         |                                    |  |  |  |
| Unit cell dimensions            | a = 13.8943(4)  Å             | α= 90°.                            |  |  |  |
|                                 | b = 9.9889(3)  Å              | β= 99.237(3)°.                     |  |  |  |
|                                 | c = 15.0537(4)  Å             | $\gamma = 90^{\circ}.$             |  |  |  |
| Volume                          | 2062.19(10) Å <sup>3</sup>    |                                    |  |  |  |
| Z                               | 4                             |                                    |  |  |  |
| Density (calculated)            | $1.451~{ m Mg/m^3}$           |                                    |  |  |  |
| Absorption coefficient          | $0.212 \text{ mm}^{-1}$       |                                    |  |  |  |
| F(000)                          | 936                           |                                    |  |  |  |
| Crystal size                    | 0.090 x 0.080 x 0.060         | mm <sup>3</sup>                    |  |  |  |
| Theta range for data collection | $2.457$ to $25.499^{\circ}$ . |                                    |  |  |  |
| Index ranges                    | -16<=h<=16, -12<=k<           | -16<=h<=16, -12<=k<=12, -18<=l<=18 |  |  |  |
| Reflections collected           | 24059                         |                                    |  |  |  |
| Independent reflections         | 3833 [R(int) = 0.0270]        |                                    |  |  |  |

Completeness to theta =  $25.242^{\circ}$ 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.00000 and 0.84658Full-matrix least-squares on  $F^2$ Refinement method Data / restraints / parameters 3833 / 0 / 283  $Goodness \text{-} of \text{-} fit \text{ on } F^2$ 1.041 Final R indices [I>2sigma(I)] R1 = 0.0320, wR2 = 0.0890R indices (all data) R1 = 0.0352, wR2 = 0.0912Extinction coefficient n/a 0.256~and -0.354 e.Å  $^{\text{-}3}$ Largest diff. peak and hole

|   | Table 2.  | Atomic coordinates       | ( x 10 <sup>4</sup> ) and equivalent | isotropic displacement |
|---|-----------|--------------------------|--------------------------------------|------------------------|
| Ŗ | oarameter | s (Å $^{2}x$ 10 $^{3}$ ) |                                      |                        |

| for C:. | U(eq) | is defined a | as one third of | the trace of th | he orthogonalized | U <sup>ij</sup> tensor. |
|---------|-------|--------------|-----------------|-----------------|-------------------|-------------------------|
|---------|-------|--------------|-----------------|-----------------|-------------------|-------------------------|

|      | X       | У       | Z       | U(eq) |
|------|---------|---------|---------|-------|
| S(1) | 8347(1) | 5623(1) | 3897(1) | 32(1) |
| F(1) | 5175(1) | 7053(1) | 7290(1) | 55(1) |
| F(2) | 5033(1) | 5825(1) | 8425(1) | 54(1) |
| )(1) | 8601(1) | 6085(1) | 4927(1) | 33(1) |
| 7(3) | 6410(1) | 6744(1) | 8322(1) | 60(1) |
| (2)  | 7426(1) | 6177(1) | 3510(1) | 41(1) |
| (3)  | 9207(1) | 5977(1) | 3549(1) | 45(1) |
| (4)  | 4596(1) | 4975(1) | 6136(1) | 48(1) |
| (1)  | 6670(1) | 5260(1) | 6738(1) | 26(1) |
| (2)  | 7926(1) | 5810(1) | 5520(1) | 28(1) |
| (3)  | 5244(1) | 2767(1) | 6552(1) | 28(1) |
| (4)  | 7573(1) | 4626(1) | 6799(1) | 31(1) |
| (5)  | 8230(1) | 3878(2) | 3955(1) | 30(1) |
| (6)  | 5954(1) | 4871(1) | 7377(1) | 30(1) |
| 7)   | 8202(1) | 4889(2) | 6189(1) | 32(1) |
| 8)   | 7053(1) | 6498(1) | 5449(1) | 31(1) |
| 9)   | 6427(1) | 6210(1) | 6056(1) | 30(1) |
| 10)  | 5731(1) | 2575(2) | 5823(1) | 35(1) |
| 11)  | 5022(1) | 4158(2) | 6865(1) | 33(1) |
| 12)  | 8040(1) | 1110(2) | 4021(1) | 38(1) |
| 13)  | 6424(1) | 3939(2) | 8144(1) | 37(1) |
| 14)  | 7368(1) | 3282(2) | 3560(1) | 36(1) |
| (15) | 9006(1) | 3112(2) | 4376(1) | 38(1) |
| (16) | 4970(1) | 1653(2) | 7004(1) | 38(1) |
| 17)  | 5640(1) | 6132(2) | 7839(1) | 41(1) |
| 18)  | 7284(1) | 1902(2) | 3593(1) | 41(1) |
| 19)  | 5710(1) | 196(2)  | 6050(1) | 47(1) |
| 20)  | 5204(1) | 371(2)  | 6754(1) | 44(1) |
| 21)  | 8902(1) | 1742(2) | 4409(1) | 41(1) |
| 22)  | 5968(1) | 1288(2) | 5584(1) | 46(1) |

| C(23) | 7918(2) | -382(2) | 4067(2) | 55(1) |
|-------|---------|---------|---------|-------|
|       |         |         |         |       |
| S(1)-O(3)   | 1.4249(11) |
|-------------|------------|
| S(1)-O(2)   | 1.4300(11) |
| S(1)-O(1)   | 1.6019(11) |
| S(1)-C(5)   | 1.7531(16) |
| F(1)-C(17)  | 1.333(2)   |
| F(2)-C(17)  | 1.3499(18) |
| O(1)-C(2)   | 1.4221(16) |
| F(3)-C(17)  | 1.340(2)   |
| O(4)-C(11)  | 1.4179(19) |
| O(4)-H(1)   | 0.8400     |
| C(1)-C(4)   | 1.395(2)   |
| C(1)-C(9)   | 1.399(2)   |
| C(1)-C(6)   | 1.5410(19) |
| C(2)-C(7)   | 1.372(2)   |
| C(2)-C(8)   | 1.384(2)   |
| C(3)-C(16)  | 1.389(2)   |
| C(3)-C(10)  | 1.391(2)   |
| C(3)-C(11)  | 1.5142(19) |
| C(4)-C(7)   | 1.391(2)   |
| C(4)-H(2)   | 0.9500     |
| C(5)-C(14)  | 1.384(2)   |
| C(5)-C(15)  | 1.389(2)   |
| C(6)-C(17)  | 1.536(2)   |
| C(6)-C(13)  | 1.543(2)   |
| C(6)-C(11)  | 1.5675(19) |
| C(7)-H(3)   | 0.9500     |
| C(8)-C(9)   | 1.389(2)   |
| C(8)-H(4)   | 0.9500     |
| C(9)-H(5)   | 0.9500     |
| C(10)-C(22) | 1.388(2)   |
| C(10)-H(6)  | 0.9500     |
| C(11)-H(7)  | 1.0000     |
| C(12)-C(18) | 1.388(2)   |
| C(12)-C(21) | 1.396(2)   |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for C:.

\_\_\_\_\_

| C(12)-C(23)           | 1.503(2)   |
|-----------------------|------------|
| C(13)-H(8)            | 0.9800     |
| C(13)-H(9)            | 0.9800     |
| C(13)-H(10)           | 0.9800     |
| C(14)-C(18)           | 1.386(2)   |
| C(14)-H(11)           | 0.9500     |
| C(15)-C(21)           | 1.378(2)   |
| C(15)-H(12)           | 0.9500     |
| C(16)-C(20)           | 1.388(2)   |
| C(16)-H(13)           | 0.9500     |
| C(18)-H(14)           | 0.9500     |
| C(19)-C(20)           | 1.373(3)   |
| C(19)-C(22)           | 1.375(3)   |
| C(19)-H(15)           | 0.9500     |
| C(20)-H(16)           | 0.9500     |
| C(21)-H(17)           | 0.9500     |
| C(22)-H(18)           | 0.9500     |
| C(23)-H(19)           | 0.9800     |
| C(23)-H(20)           | 0.9800     |
| C(23)-H(21)           | 0.9800     |
|                       |            |
| O(3)- $S(1)$ - $O(2)$ | 120.18(7)  |
| O(3)-S(1)-O(1)        | 102.46(6)  |
| O(2)-S(1)-O(1)        | 109.09(6)  |
| O(3)-S(1)-C(5)        | 110.77(7)  |
| O(2)-S(1)-C(5)        | 108.79(7)  |
| O(1)-S(1)-C(5)        | 104.26(6)  |
| C(2)-O(1)-S(1)        | 119.10(8)  |
| C(11)-O(4)-H(1)       | 109.5      |
| C(4)-C(1)-C(9)        | 117.73(13) |
| C(4)-C(1)-C(6)        | 120.50(12) |
| C(9)-C(1)-C(6)        | 121.71(12) |
| C(7)-C(2)-C(8)        | 121.92(13) |
| C(7)-C(2)-O(1)        | 117.09(12) |
| C(8)-C(2)-O(1)        | 120.90(12) |
| C(16)-C(3)-C(10)      | 118.78(14) |

| C(16)-C(3)-C(11)  | 119.80(13) |
|-------------------|------------|
| C(10)-C(3)-C(11)  | 121.41(13) |
| C(7)-C(4)-C(1)    | 121.61(13) |
| C(7)-C(4)-H(2)    | 119.2      |
| C(1)-C(4)-H(2)    | 119.2      |
| C(14)-C(5)-C(15)  | 120.92(15) |
| C(14)-C(5)-S(1)   | 119.09(11) |
| C(15)-C(5)-S(1)   | 119.97(11) |
| C(17)-C(6)-C(1)   | 109.51(11) |
| C(17)-C(6)-C(13)  | 105.82(12) |
| C(1)-C(6)-C(13)   | 112.41(12) |
| C(17)-C(6)-C(11)  | 108.88(12) |
| C(1)-C(6)-C(11)   | 111.87(11) |
| C(13)-C(6)-C(11)  | 108.12(12) |
| C(2)-C(7)-C(4)    | 118.68(13) |
| C(2)-C(7)-H(3)    | 120.7      |
| C(4)-C(7)-H(3)    | 120.7      |
| C(2)-C(8)-C(9)    | 118.64(13) |
| C(2)-C(8)-H(4)    | 120.7      |
| C(9)-C(8)-H(4)    | 120.7      |
| C(8)-C(9)-C(1)    | 121.38(13) |
| C(8)-C(9)-H(5)    | 119.3      |
| C(1)-C(9)-H(5)    | 119.3      |
| C(22)-C(10)-C(3)  | 119.86(14) |
| C(22)-C(10)-H(6)  | 120.1      |
| C(3)-C(10)-H(6)   | 120.1      |
| O(4)-C(11)-C(3)   | 111.58(13) |
| O(4)-C(11)-C(6)   | 109.21(12) |
| C(3)-C(11)-C(6)   | 112.13(11) |
| O(4)-C(11)-H(7)   | 107.9      |
| C(3)-C(11)-H(7)   | 107.9      |
| C(6)-C(11)-H(7)   | 107.9      |
| C(18)-C(12)-C(21) | 118.09(15) |
| C(18)-C(12)-C(23) | 120.30(16) |
| C(21)-C(12)-C(23) | 121.60(16) |
| C(6)-C(13)-H(8)   | 109.5      |

| C(6)-C(13)-H(9)   | 109.5      |
|-------------------|------------|
| H(8)-C(13)-H(9)   | 109.5      |
| C(6)-C(13)-H(10)  | 109.5      |
| H(8)-C(13)-H(10)  | 109.5      |
| H(9)-C(13)-H(10)  | 109.5      |
| C(5)-C(14)-C(18)  | 118.97(14) |
| C(5)-C(14)-H(11)  | 120.5      |
| C(18)-C(14)-H(11) | 120.5      |
| C(21)-C(15)-C(5)  | 119.03(14) |
| C(21)-C(15)-H(12) | 120.5      |
| C(5)-C(15)-H(12)  | 120.5      |
| C(20)-C(16)-C(3)  | 120.78(15) |
| C(20)-C(16)-H(13) | 119.6      |
| C(3)-C(16)-H(13)  | 119.6      |
| F(1)-C(17)-F(3)   | 106.70(13) |
| F(1)-C(17)-F(2)   | 105.67(13) |
| F(3)-C(17)-F(2)   | 106.13(13) |
| F(1)-C(17)-C(6)   | 115.44(13) |
| F(3)-C(17)-C(6)   | 111.11(13) |
| F(2)-C(17)-C(6)   | 111.20(12) |
| C(14)-C(18)-C(12) | 121.50(15) |
| C(14)-C(18)-H(14) | 119.2      |
| C(12)-C(18)-H(14) | 119.2      |
| C(20)-C(19)-C(22) | 119.99(15) |
| C(20)-C(19)-H(15) | 120.0      |
| C(22)-C(19)-H(15) | 120.0      |
| C(19)-C(20)-C(16) | 119.85(16) |
| C(19)-C(20)-H(16) | 120.1      |
| C(16)-C(20)-H(16) | 120.1      |
| C(15)-C(21)-C(12) | 121.47(15) |
| C(15)-C(21)-H(17) | 119.3      |
| C(12)-C(21)-H(17) | 119.3      |
| C(19)-C(22)-C(10) | 120.68(16) |
| C(19)-C(22)-H(18) | 119.7      |
| C(10)-C(22)-H(18) | 119.7      |
| C(12)-C(23)-H(19) | 109.5      |

| C(12)-C(23)-H(20) | 109.5 |
|-------------------|-------|
| H(19)-C(23)-H(20) | 109.5 |
| C(12)-C(23)-H(21) | 109.5 |
| H(19)-C(23)-H(21) | 109.5 |
| H(20)-C(23)-H(21) | 109.5 |
|                   |       |

|       | TT11  | <b>T T 9 9</b> | <b>T T 9</b> 9 | <b>T T 9</b> 9 | <b>TT</b> 19 | <b>T T</b> 19 |
|-------|-------|----------------|----------------|----------------|--------------|---------------|
|       | U     | 022            | $U^{55}$       | $U^{23}$       | $U^{13}$     | $U^{12}$      |
| S(1)  | 29(1) | 38(1)          | 31(1)          | 4(1)           | 11(1)        | -1(1)         |
| F(1)  | 76(1) | 30(1)          | 69(1)          | -2(1)          | 37(1)        | 12(1)         |
| F(2)  | 70(1) | 42(1)          | 61(1)          | -12(1)         | 43(1)        | -7(1)         |
| O(1)  | 27(1) | 38(1)          | 35(1)          | -2(1)          | 10(1)        | -7(1)         |
| F(3)  | 71(1) | 47(1)          | 68(1)          | -29(1)         | 25(1)        | -24(1)        |
| O(2)  | 40(1) | 45(1)          | 37(1)          | 6(1)           | 5(1)         | 6(1)          |
| O(3)  | 41(1) | 53(1)          | 46(1)          | 6(1)           | 22(1)        | -6(1)         |
| O(4)  | 29(1) | 35(1)          | 74(1)          | 2(1)           | -6(1)        | 5(1)          |
| C(1)  | 26(1) | 24(1)          | 30(1)          | -5(1)          | 6(1)         | -4(1)         |
| C(2)  | 26(1) | 28(1)          | 30(1)          | -4(1)          | 8(1)         | -5(1)         |
| C(3)  | 25(1) | 27(1)          | 33(1)          | -2(1)          | 3(1)         | -3(1)         |
| C(4)  | 30(1) | 31(1)          | 32(1)          | 2(1)           | 5(1)         | 2(1)          |
| C(5)  | 27(1) | 38(1)          | 27(1)          | -2(1)          | 10(1)        | 0(1)          |
| C(6)  | 31(1) | 26(1)          | 35(1)          | -4(1)          | 11(1)        | -3(1)         |
| C(7)  | 25(1) | 36(1)          | 35(1)          | -1(1)          | 4(1)         | 3(1)          |
| C(8)  | 32(1) | 26(1)          | 33(1)          | 2(1)           | 6(1)         | 1(1)          |
| C(9)  | 28(1) | 27(1)          | 36(1)          | -2(1)          | 7(1)         | 3(1)          |
| C(10) | 39(1) | 33(1)          | 33(1)          | -3(1)          | 7(1)         | -7(1)         |
| C(11) | 26(1) | 29(1)          | 46(1)          | -4(1)          | 11(1)        | -2(1)         |
| C(12) | 43(1) | 40(1)          | 35(1)          | -6(1)          | 19(1)        | 0(1)          |
| C(13) | 40(1) | 40(1)          | 32(1)          | 1(1)           | 9(1)         | -8(1)         |
| C(14) | 28(1) | 45(1)          | 36(1)          | -2(1)          | 4(1)         | 2(1)          |
| C(15) | 27(1) | 44(1)          | 42(1)          | -2(1)          | 3(1)         | 1(1)          |
| C(16) | 42(1) | 34(1)          | 38(1)          | -2(1)          | 10(1)        | -11(1)        |
| C(17) | 49(1) | 32(1)          | 47(1)          | -10(1)         | 24(1)        | -8(1)         |
| C(18) | 34(1) | 47(1)          | 41(1)          | -10(1)         | 7(1)         | -7(1)         |
| C(19) | 47(1) | 29(1)          | 62(1)          | -13(1)         | -2(1)        | 2(1)          |
| C(20) | 52(1) | 29(1)          | 48(1)          | 3(1)           | -3(1)        | -10(1)        |
| C(21) | 37(1) | 44(1)          | 42(1)          | 1(1)           | 7(1)         | 8(1)          |
| C(22) | 49(1) | 46(1)          | 47(1)          | -18(1)         | 14(1)        | -4(1)         |
| C(23) | 63(1) | 40(1)          | 68(1)          | -7(1)          | 26(1)        | -2(1)         |

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for C:. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

|       | X    | У    | Z    | U(eq) |
|-------|------|------|------|-------|
|       |      |      |      |       |
| H(1)  | 4048 | 4663 | 5915 | 72    |
| H(2)  | 7762 | 3998 | 7269 | 37    |
| H(3)  | 8811 | 4440 | 6234 | 38    |
| H(4)  | 6885 | 7155 | 4994 | 37    |
| H(5)  | 5821 | 6667 | 6007 | 36    |
| H(6)  | 5900 | 3322 | 5489 | 42    |
| H(7)  | 4543 | 4069 | 7290 | 40    |
| H(8)  | 6985 | 4390 | 8498 | 56    |
| H(9)  | 6642 | 3112 | 7887 | 56    |
| H(10) | 5944 | 3723 | 8533 | 56    |
| H(11) | 6841 | 3812 | 3271 | 44    |
| H(12) | 9600 | 3526 | 4637 | 45    |
| H(13) | 4620 | 1770 | 7491 | 45    |
| H(14) | 6696 | 1488 | 3317 | 49    |
| H(15) | 5882 | -680 | 5885 | 57    |
| H(16) | 5013 | -384 | 7068 | 53    |
| H(17) | 9428 | 1215 | 4702 | 49    |
| H(18) | 6312 | 1161 | 5094 | 56    |
| H(19) | 7292 | -588 | 4258 | 83    |
| H(20) | 8450 | -759 | 4502 | 83    |
| H(21) | 7933 | -773 | 3472 | 83    |
|       |      |      |      |       |

Table 5. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10^3$  )

for C:.

Table 6. Torsion angles [°] for C:.

| O(3)-S(1)-O(1)-C(2)            | -175.92(10) |
|--------------------------------|-------------|
| O(2)-S(1)-O(1)-C(2)            | 55.68(12)   |
| C(5)-S(1)-O(1)-C(2)            | -60.39(11)  |
| S(1)-O(1)-C(2)-C(7)            | 111.66(12)  |
| S(1)-O(1)-C(2)-C(8)            | -71.59(15)  |
| C(9)-C(1)-C(4)-C(7)            | -2.0(2)     |
| C(6)-C(1)-C(4)-C(7)            | 175.24(13)  |
| O(3)-S(1)-C(5)-C(14)           | -127.41(12) |
| O(2)-S(1)-C(5)-C(14)           | 6.76(13)    |
| O(1)-S(1)-C(5)-C(14)           | 123.05(11)  |
| O(3)-S(1)-C(5)-C(15)           | 51.13(14)   |
| O(2)-S(1)-C(5)-C(15)           | -174.69(11) |
| O(1)-S(1)-C(5)-C(15)           | -58.41(13)  |
| C(4)-C(1)-C(6)-C(17)           | 127.19(14)  |
| C(9)-C(1)-C(6)-C(17)           | -55.69(17)  |
| C(4)-C(1)-C(6)-C(13)           | 9.87(18)    |
| C(9)-C(1)-C(6)-C(13)           | -173.01(12) |
| C(4)-C(1)-C(6)-C(11)           | -112.00(14) |
| C(9)-C(1)-C(6)-C(11)           | 65.12(16)   |
| C(8)-C(2)-C(7)-C(4)            | 1.3(2)      |
| O(1)-C(2)-C(7)-C(4)            | 178.00(12)  |
| C(1)-C(4)-C(7)-C(2)            | 0.9(2)      |
| C(7)- $C(2)$ - $C(8)$ - $C(9)$ | -2.2(2)     |
| O(1)-C(2)-C(8)-C(9)            | -178.78(12) |
| C(2)- $C(8)$ - $C(9)$ - $C(1)$ | 1.0(2)      |
| C(4)-C(1)-C(9)-C(8)            | 1.1(2)      |
| C(6)-C(1)-C(9)-C(8)            | -176.14(12) |
| C(16)-C(3)-C(10)-C(22)         | -2.6(2)     |
| C(11)-C(3)-C(10)-C(22)         | 176.54(14)  |
| C(16)-C(3)-C(11)-O(4)          | -132.39(14) |
| C(10)-C(3)-C(11)-O(4)          | 48.50(18)   |
| C(16)-C(3)-C(11)-C(6)          | 104.75(15)  |
| C(10)-C(3)-C(11)-C(6)          | -74.37(17)  |
| C(17)-C(6)-C(11)-O(4)          | 67.49(15)   |

| C(1) - C(6) - C(11) - O(4)       | -5368(15)   |
|----------------------------------|-------------|
| C(12) - C(2) - C(11) - O(4)      | -177 08(19) |
| C(17) - C(6) - C(11) - C(2)      | -169 29(12) |
| C(1), C(2), C(11), C(3)          | -100.32(12) |
| $C(1)^{-}C(6)^{-}C(11)^{-}C(3)$  | 70.51(15)   |
| C(13)- $C(6)$ - $C(11)$ - $C(3)$ | -53.79(16)  |
| C(15)-C(5)-C(14)-C(18)           | 0.3(2)      |
| S(1)-C(5)-C(14)-C(18)            | 178.87(12)  |
| C(14)-C(5)-C(15)-C(21)           | -1.1(2)     |
| S(1)-C(5)-C(15)-C(21)            | -179.60(12) |
| C(10)-C(3)-C(16)-C(20)           | 2.0(2)      |
| C(11)-C(3)-C(16)-C(20)           | -177.17(14) |
| C(1)-C(6)-C(17)-F(1)             | 61.39(17)   |
| C(13)-C(6)-C(17)-F(1)            | -177.22(12) |
| C(11)-C(6)-C(17)-F(1)            | -61.21(17)  |
| C(1)-C(6)-C(17)-F(3)             | -60.27(17)  |
| C(13)-C(6)-C(17)-F(3)            | 61.12(16)   |
| C(11)-C(6)-C(17)-F(3)            | 177.13(12)  |
| C(1)-C(6)-C(17)-F(2)             | -178.25(13) |
| C(13)-C(6)-C(17)-F(2)            | -56.86(17)  |
| C(11)-C(6)-C(17)-F(2)            | 59.15(17)   |
| C(5)-C(14)-C(18)-C(12)           | 0.7(2)      |
| C(21)-C(12)-C(18)-C(14)          | -1.0(2)     |
| C(23)-C(12)-C(18)-C(14)          | 178.36(15)  |
| C(22)-C(19)-C(20)-C(16)          | -1.3(3)     |
| C(3)-C(16)-C(20)-C(19)           | 0.0(2)      |
| C(5)-C(15)-C(21)-C(12)           | 0.8(2)      |
| C(18)-C(12)-C(21)-C(15)          | 0.3(2)      |
| C(23)-C(12)-C(21)-C(15)          | -179.13(15) |
| C(20)-C(19)-C(22)-C(10)          | 0.7(3)      |
| C(3)-C(10)-C(22)-C(19)           | 1.3(2)      |
|                                  |             |

| D-HA              | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|-------------------|--------|-------|------------|--------|
| O(4)-H(1)O(2)#1   | 0.84   | 2.49  | 3.1584(17) | 136.8  |
| C(14)-H(11)O(4)#1 | 0.95   | 2.61  | 3.3291(19) | 132.6  |
| C(15)-H(12)O(1)#2 | 0.95   | 2.51  | 3.4167(17) | 159.7  |
|                   |        |       |            |        |

Table 7. Hydrogen bonds for C: [Å and °].

#1 -x+1,-y+1,-z+1 #2 -x+2,-y+1,-z+1



Table 1. Crystal data and structure refinement for C:.

| Identification code             | 7aa                                   |          |
|---------------------------------|---------------------------------------|----------|
| Empirical formula               | C17 H17 F3 O2                         |          |
| Formula weight                  | 310.30                                |          |
| Temperature                     | 173(2) K                              |          |
| Wavelength                      | $0.71073~{\rm \AA}$                   |          |
| Crystal system                  | Orthorhombic                          |          |
| Space group                     | Pbcn                                  |          |
| Unit cell dimensions            | a = 24.3360(11)  Å                    | α= 90°.  |
|                                 | b = 7.1684(3)  Å                      | β= 90°.  |
|                                 | c = 16.7513(8)  Å                     | γ = 90°. |
| Volume                          | 2922.3(2) Å <sup>3</sup>              |          |
| Z                               | 8                                     |          |
| Density (calculated)            | $1.411 \text{ Mg/m}^3$                |          |
| Absorption coefficient          | $0.117 \text{ mm}^{-1}$               |          |
| F(000)                          | 1296                                  |          |
| Crystal size                    | 0.220 x 0.190 x 0.130 mm <sup>3</sup> |          |
| Theta range for data collection | $2.432$ to $25.499^{\circ}$ .         |          |
| Index ranges                    | -25<=h<=29, -8<=k<=8, -20             | )<=l<=19 |
| Reflections collected           | 20991                                 |          |

Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 2724 [R(int) = 0.0608] 100.0 % Semi-empirical from equivalents 1.00000 and 0.24460 Full-matrix least-squares on F<sup>2</sup> 2724 / 0 / 203 1.039 R1 = 0.0369, wR2 = 0.0935 R1 = 0.0468, wR2 = 0.0989 n/a 0.200 and -0.260 e.Å<sup>-3</sup>

| Table 2.  | Atomic coordinates | ( x 10 <sup>4</sup> ) and equivalent | isotropic displacement |
|-----------|--------------------|--------------------------------------|------------------------|
| parameter | $s (Å^2 x \ 10^3)$ |                                      |                        |

|       | X       | У       | Z       | U(eq) |
|-------|---------|---------|---------|-------|
|       | 3138(1) | 5003(1) | 7133(1) | 39(1) |
| F(2)  | 2889(1) | 3058(1) | 6236(1) | 40(1) |
| F(3)  | 3310(1) | 5581(1) | 5907(1) | 44(1) |
| O(1)  | 4800(1) | 1270(2) | 3497(1) | 32(1) |
| O(2)  | 4385(1) | 891(2)  | 7262(1) | 32(1) |
| C(1)  | 4095(1) | 2793(2) | 5683(1) | 22(1) |
| C(2)  | 3542(1) | 1704(2) | 7847(1) | 23(1) |
| C(3)  | 4552(1) | 1788(2) | 4199(1) | 25(1) |
| C(4)  | 3867(1) | 3258(2) | 6520(1) | 23(1) |
| C(5)  | 3831(1) | 1389(2) | 7049(1) | 23(1) |
| C(6)  | 3988(1) | 1835(2) | 4300(1) | 28(1) |
| C(7)  | 3767(1) | 2314(2) | 5035(1) | 28(1) |
| C(8)  | 3820(1) | 2533(2) | 8482(1) | 28(1) |
| C(9)  | 3003(1) | 1139(2) | 7972(1) | 30(1) |
| C(10) | 4661(1) | 2788(2) | 5555(1) | 29(1) |
| C(11) | 4887(1) | 2285(2) | 4829(1) | 31(1) |
| C(12) | 3304(1) | 4194(2) | 6450(1) | 30(1) |
| C(13) | 3566(1) | 2799(2) | 9210(1) | 33(1) |
| C(14) | 3028(1) | 2226(2) | 9325(1) | 35(1) |
| C(15) | 4237(1) | 4726(2) | 6928(1) | 34(1) |
| C(16) | 3588(1) | -257(2) | 6591(1) | 34(1) |
| C(17) | 2748(1) | 1395(2) | 8704(1) | 35(1) |

for C:. U(eq) is defined as one third of  $\;$  the trace of the orthogonalized  $U^{ij}$  tensor.

| F(1)-C(12)  | 1.3452(17) |
|-------------|------------|
| F(2)-C(12)  | 1.3450(19) |
| F(3)-C(12)  | 1.3473(18) |
| O(1)-C(3)   | 1.3732(17) |
| O(1)-H(1)   | 0.8400     |
| O(2)-C(5)   | 1.4401(17) |
| O(2)-H(2)   | 0.8400     |
| C(1)-C(7)   | 1.391(2)   |
| C(1)-C(10)  | 1.394(2)   |
| C(1)-C(4)   | 1.5437(19) |
| C(2)-C(9)   | 1.389(2)   |
| C(2)-C(8)   | 1.395(2)   |
| C(2)-C(5)   | 1.5272(19) |
| C(3)-C(11)  | 1.380(2)   |
| C(3)-C(6)   | 1.382(2)   |
| C(4)-C(12)  | 1.531(2)   |
| C(4)-C(15)  | 1.544(2)   |
| C(4)-C(5)   | 1.6088(19) |
| C(5)-C(16)  | 1.526(2)   |
| C(6)-C(7)   | 1.387(2)   |
| C(6)-H(3)   | 0.9500     |
| C(7)-H(4)   | 0.9500     |
| C(8)-C(13)  | 1.380(2)   |
| C(8)-H(5)   | 0.9500     |
| C(9)-C(17)  | 1.385(2)   |
| C(9)-H(6)   | 0.9500     |
| C(10)-C(11) | 1.383(2)   |
| C(10)-H(7)  | 0.9500     |
| C(11)-H(8)  | 0.9500     |
| C(13)-C(14) | 1.386(2)   |
| C(13)-H(9)  | 0.9500     |
| C(14)-C(17) | 1.379(2)   |
| C(14)-H(10) | 0.9500     |
| C(15)-H(11) | 0.9800     |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for C:.

| C(15)-H(12)      | 0.9800     |
|------------------|------------|
| C(15)-H(13)      | 0.9800     |
| C(16)-H(14)      | 0.9800     |
| C(16)-H(15)      | 0.9800     |
| C(16)-H(16)      | 0.9800     |
| C(17)-H(17)      | 0.9500     |
|                  |            |
| C(3)-O(1)-H(1)   | 109.5      |
| C(5)-O(2)-H(2)   | 109.5      |
| C(7)-C(1)-C(10)  | 116.50(13) |
| C(7)-C(1)-C(4)   | 123.82(12) |
| C(10)-C(1)-C(4)  | 119.65(13) |
| C(9)-C(2)-C(8)   | 117.83(14) |
| C(9)-C(2)-C(5)   | 121.60(13) |
| C(8)-C(2)-C(5)   | 120.55(13) |
| O(1)-C(3)-C(11)  | 117.61(13) |
| O(1)-C(3)-C(6)   | 123.27(13) |
| C(11)-C(3)-C(6)  | 119.11(13) |
| C(12)-C(4)-C(15) | 104.89(12) |
| C(12)-C(4)-C(1)  | 110.23(12) |
| C(15)-C(4)-C(1)  | 109.89(12) |
| C(12)-C(4)-C(5)  | 110.96(12) |
| C(15)-C(4)-C(5)  | 110.88(12) |
| C(1)-C(4)-C(5)   | 109.89(11) |
| O(2)-C(5)-C(16)  | 107.15(12) |
| O(2)-C(5)-C(2)   | 104.53(11) |
| C(16)-C(5)-C(2)  | 112.08(12) |
| O(2)-C(5)-C(4)   | 106.91(11) |
| C(16)-C(5)-C(4)  | 112.90(12) |
| C(2)-C(5)-C(4)   | 112.61(11) |
| C(3)-C(6)-C(7)   | 120.04(14) |
| C(3)-C(6)-H(3)   | 120.0      |
| C(7)-C(6)-H(3)   | 120.0      |
| C(6)-C(7)-C(1)   | 122.06(13) |
| C(6)-C(7)-H(4)   | 119.0      |
| C(1)-C(7)-H(4)   | 119.0      |

| C(13)-C(8)-C(2)   | 121.07(14) |
|-------------------|------------|
| C(13)-C(8)-H(5)   | 119.5      |
| C(2)-C(8)-H(5)    | 119.5      |
| C(17)-C(9)-C(2)   | 121.13(15) |
| C(17)-C(9)-H(6)   | 119.4      |
| C(2)-C(9)-H(6)    | 119.4      |
| C(11)-C(10)-C(1)  | 121.99(14) |
| C(11)-C(10)-H(7)  | 119.0      |
| C(1)-C(10)-H(7)   | 119.0      |
| C(3)-C(11)-C(10)  | 120.25(14) |
| C(3)-C(11)-H(8)   | 119.9      |
| C(10)-C(11)-H(8)  | 119.9      |
| F(2)-C(12)-F(1)   | 105.29(12) |
| F(2)-C(12)-F(3)   | 105.97(13) |
| F(1)-C(12)-F(3)   | 105.09(12) |
| F(2)-C(12)-C(4)   | 115.24(13) |
| F(1)-C(12)-C(4)   | 113.04(13) |
| F(3)-C(12)-C(4)   | 111.42(12) |
| C(8)-C(13)-C(14)  | 120.36(15) |
| C(8)-C(13)-H(9)   | 119.8      |
| C(14)-C(13)-H(9)  | 119.8      |
| C(17)-C(14)-C(13) | 119.25(15) |
| C(17)-C(14)-H(10) | 120.4      |
| C(13)-C(14)-H(10) | 120.4      |
| C(4)-C(15)-H(11)  | 109.5      |
| C(4)-C(15)-H(12)  | 109.5      |
| H(11)-C(15)-H(12) | 109.5      |
| C(4)-C(15)-H(13)  | 109.5      |
| H(11)-C(15)-H(13) | 109.5      |
| H(12)-C(15)-H(13) | 109.5      |
| C(5)-C(16)-H(14)  | 109.5      |
| C(5)-C(16)-H(15)  | 109.5      |
| H(14)-C(16)-H(15) | 109.5      |
| C(5)-C(16)-H(16)  | 109.5      |
| H(14)-C(16)-H(16) | 109.5      |
| H(15)-C(16)-H(16) | 109.5      |

| C(14)-C(17)-C(9)  | 120.37(15) |
|-------------------|------------|
| C(14)-C(17)-H(17) | 119.8      |
| C(9)-C(17)-H(17)  | 119.8      |

|       | U <sup>11</sup> | $\mathrm{U}^{22}$ | $U^{33}$ | $\mathrm{U}^{23}$ | $U^{13}$ | $\mathrm{U}^{12}$ |
|-------|-----------------|-------------------|----------|-------------------|----------|-------------------|
| F(1)  | 46(1)           | 40(1)             | 30(1)    | 1(1)              | 14(1)    | 17(1)             |
| F(2)  | 24(1)           | 55(1)             | 39(1)    | 1(1)              | 1(1)     | 6(1)              |
| F(3)  | 58(1)           | 40(1)             | 33(1)    | 13(1)             | 13(1)    | 22(1)             |
| O(1)  | 30(1)           | 44(1)             | 23(1)    | -10(1)            | 5(1)     | -2(1)             |
| O(2)  | 28(1)           | 46(1)             | 22(1)    | 0(1)              | 3(1)     | 16(1)             |
| C(1)  | 24(1)           | 22(1)             | 21(1)    | 0(1)              | 2(1)     | 2(1)              |
| C(2)  | 25(1)           | 23(1)             | 22(1)    | 2(1)              | 0(1)     | 3(1)              |
| C(3)  | 29(1)           | 24(1)             | 21(1)    | -3(1)             | 5(1)     | 0(1)              |
| C(4)  | 24(1)           | 24(1)             | 21(1)    | -1(1)             | 2(1)     | 1(1)              |
| C(5)  | 24(1)           | 25(1)             | 22(1)    | 0(1)              | -1(1)    | 4(1)              |
| C(6)  | 28(1)           | 35(1)             | 23(1)    | -5(1)             | -5(1)    | 3(1)              |
| C(7)  | 20(1)           | 35(1)             | 29(1)    | -4(1)             | 0(1)     | 4(1)              |
| C(8)  | 23(1)           | 34(1)             | 26(1)    | -2(1)             | 1(1)     | 1(1)              |
| C(9)  | 28(1)           | 32(1)             | 30(1)    | 2(1)              | 0(1)     | -4(1)             |
| C(10) | 26(1)           | 38(1)             | 23(1)    | -6(1)             | -1(1)    | -4(1)             |
| C(11) | 22(1)           | 42(1)             | 29(1)    | -7(1)             | 5(1)     | -4(1)             |
| C(12) | 34(1)           | 33(1)             | 24(1)    | 4(1)              | 7(1)     | 7(1)              |
| C(13) | 36(1)           | 40(1)             | 24(1)    | -7(1)             | 0(1)     | 4(1)              |
| C(14) | 38(1)           | 40(1)             | 28(1)    | 0(1)              | 12(1)    | 6(1)              |
| C(15) | 42(1)           | 32(1)             | 27(1)    | -8(1)             | 9(1)     | -9(1)             |
| C(16) | 47(1)           | 25(1)             | 29(1)    | -2(1)             | 2(1)     | -1(1)             |
| C(17) | 27(1)           | 40(1)             | 39(1)    | 3(1)              | 9(1)     | -3(1)             |

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for C:. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12} ]$ 

|       | х    | У     | Z    | U(eq) |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| H(1)  | 4567 | 771   | 3195 | 49    |
| H(2)  | 4546 | 447   | 6861 | 48    |
| H(3)  | 3753 | 1538  | 3866 | 34    |
| H(4)  | 3379 | 2314  | 5097 | 34    |
| H(5)  | 4190 | 2922  | 8414 | 33    |
| H(6)  | 2805 | 568   | 7549 | 36    |
| H(7)  | 4898 | 3140  | 5979 | 35    |
| H(8)  | 5275 | 2281  | 4763 | 37    |
| H(9)  | 3761 | 3378  | 9634 | 40    |
| H(10) | 2853 | 2403  | 9827 | 43    |
| H(11) | 4291 | 5786  | 6567 | 50    |
| H(12) | 4594 | 4167  | 7055 | 50    |
| H(13) | 4061 | 5158  | 7420 | 50    |
| H(14) | 3825 | -557  | 6136 | 51    |
| H(15) | 3220 | 70    | 6399 | 51    |
| H(16) | 3564 | -1342 | 6945 | 51    |
| H(17) | 2380 | 996   | 8778 | 42    |

Table 5. Hydrogen coordinates ( x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10  $^{3}$ )

for C:.

Table 6. Torsion angles [°] for C:.

| C(7)-C(1)-C(4)-C(12)  | -32.40(19)  |
|-----------------------|-------------|
| C(10)-C(1)-C(4)-C(12) | 149.59(14)  |
| C(7)-C(1)-C(4)-C(15)  | -147.53(14) |
| C(10)-C(1)-C(4)-C(15) | 34.46(18)   |
| C(7)-C(1)-C(4)-C(5)   | 90.20(16)   |
| C(10)-C(1)-C(4)-C(5)  | -87.82(16)  |
| C(9)-C(2)-C(5)-O(2)   | -141.33(14) |
| C(8)-C(2)-C(5)-O(2)   | 37.08(17)   |
| C(9)-C(2)-C(5)-C(16)  | -25.61(19)  |
| C(8)-C(2)-C(5)-C(16)  | 152.79(14)  |
| C(9)-C(2)-C(5)-C(4)   | 102.99(16)  |
| C(8)-C(2)-C(5)-C(4)   | -78.61(16)  |
| C(12)-C(4)-C(5)-O(2)  | -164.85(11) |
| C(15)-C(4)-C(5)-O(2)  | -48.71(15)  |
| C(1)-C(4)-C(5)-O(2)   | 72.98(13)   |
| C(12)-C(4)-C(5)-C(16) | 77.57(15)   |
| C(15)-C(4)-C(5)-C(16) | -166.29(13) |
| C(1)-C(4)-C(5)-C(16)  | -44.60(16)  |
| C(12)-C(4)-C(5)-C(2)  | -50.61(16)  |
| C(15)-C(4)-C(5)-C(2)  | 65.54(15)   |
| C(1)-C(4)-C(5)-C(2)   | -172.78(11) |
| O(1)-C(3)-C(6)-C(7)   | 177.87(14)  |
| C(11)-C(3)-C(6)-C(7)  | -2.2(2)     |
| C(3)-C(6)-C(7)-C(1)   | 1.3(2)      |
| C(10)-C(1)-C(7)-C(6)  | 0.6(2)      |
| C(4)-C(1)-C(7)-C(6)   | -177.42(14) |
| C(9)-C(2)-C(8)-C(13)  | -0.5(2)     |
| C(5)-C(2)-C(8)-C(13)  | -179.00(14) |
| C(8)-C(2)-C(9)-C(17)  | 0.1(2)      |
| C(5)-C(2)-C(9)-C(17)  | 178.57(14)  |
| C(7)-C(1)-C(10)-C(11) | -1.7(2)     |
| C(4)-C(1)-C(10)-C(11) | 176.49(14)  |
| O(1)-C(3)-C(11)-C(10) | -178.86(14) |
| C(6)-C(3)-C(11)-C(10) | 1.2(2)      |

| C(1)-C(10)-C(11)-C(3)  | 0.8(2)      |
|------------------------|-------------|
| C(15)-C(4)-C(12)-F(2)  | -169.00(12) |
| C(1)-C(4)-C(12)-F(2)   | 72.76(15)   |
| C(5)-C(4)-C(12)-F(2)   | -49.21(16)  |
| C(15)-C(4)-C(12)-F(1)  | -47.85(16)  |
| C(1)-C(4)-C(12)-F(1)   | -166.10(12) |
| C(5)-C(4)-C(12)-F(1)   | 71.93(16)   |
| C(15)-C(4)-C(12)-F(3)  | 70.23(15)   |
| C(1)-C(4)-C(12)-F(3)   | -48.02(17)  |
| C(5)-C(4)-C(12)-F(3)   | -169.99(12) |
| C(2)-C(8)-C(13)-C(14)  | 0.6(2)      |
| C(8)-C(13)-C(14)-C(17) | -0.3(2)     |
| C(13)-C(14)-C(17)-C(9) | -0.1(2)     |
| C(2)-C(9)-C(17)-C(14)  | 0.2(2)      |
|                        |             |

| D-HA            | d(D-H)      | d(HA)        | d(DA)      | <(DHA)        |
|-----------------|-------------|--------------|------------|---------------|
| O(1)-H(1)O(2)#1 | 0.84        | 2.02         | 2.7761(15) | 150.2         |
| C(16)-H(15)F(2) | 0.84 $0.98$ | 2.10<br>2.30 | 2.9821(19) | 143.6 $125.5$ |

Table 7. Hydrogen bonds for C: [Å and °].

#1 x,-y,z-1/2 #2 -x+1,-y,-z+1



Table 1. Crystal data and structure refinement for C:.

| Identification code    | 9aa                        |                        |
|------------------------|----------------------------|------------------------|
| Empirical formula      | C26 H26 Cl F3 O4           |                        |
| Formula weight         | 494.92                     |                        |
| Temperature            | 173(2) K                   |                        |
| Wavelength             | $0.71073~{\rm \AA}$        |                        |
| Crystal system         | Monoclinic                 |                        |
| Space group            | P21/n                      |                        |
| Unit cell dimensions   | a = 12.0518(6)  Å          | α= 90°.                |
|                        | b = 11.0358(4)  Å          | β= 103.931(5)°.        |
|                        | c = 18.5393(9)  Å          | $\gamma = 90^{\circ}.$ |
| Volume                 | 2393.22(19) Å <sup>3</sup> |                        |
| Z                      | 4                          |                        |
| Density (calculated)   | $1.374~{ m Mg/m^3}$        |                        |
| Absorption coefficient | $0.214 \text{ mm}^{-1}$    |                        |

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta =  $25.242^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on  ${\rm F}^2$ Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

1032  $0.210 \ge 0.180 \ge 0.110 \text{ mm}^3$ 2.602 to 25.495°. -14<=h<=13, -13<=k<=13, -22<=l<=22 284314433 [R(int) = 0.0376] 99.4 % Semi-empirical from equivalents 1.00000 and 0.76561 Full-matrix least-squares on  $F^2$ 4433 / 0 / 312 1.052R1 = 0.0458, wR2 = 0.1285 R1 = 0.0523, wR2 = 0.1330 n/a 0.726 and -0.389 e.Å  $^{\text{-}3}$ 

| Table 2 | . Atomic coordinates | ( $\ge 10^4$ ) and equivalent | isotropic displacement |
|---------|----------------------|-------------------------------|------------------------|
| paramet | ers (Ųx 10³)         |                               |                        |

| for C:. | U(eq) is | defined as on | e third of th | e trace of the | e orthogonalized | U <sup>ij</sup> tensor. |
|---------|----------|---------------|---------------|----------------|------------------|-------------------------|
|---------|----------|---------------|---------------|----------------|------------------|-------------------------|

|       | х       | У        | Z       | U(eq) |
|-------|---------|----------|---------|-------|
| Cl(1) | 4483(1) | 13109(1) | 2156(1) | 47(1) |
| C(1)  | 4649(2) | 11624(2) | 1875(1) | 31(1) |
| C(2)  | 4338(2) | 11342(2) | 1130(1) | 32(1) |
| 2(3)  | 4474(2) | 10159(2) | 905(1)  | 27(1) |
| (4)   | 4910(2) | 9242(2)  | 1410(1) | 22(1) |
| (5)   | 5240(2) | 9572(2)  | 2163(1) | 28(1) |
| (6)   | 5116(2) | 10749(2) | 2395(1) | 32(1) |
| (7)   | 4980(2) | 7931(2)  | 1121(1) | 22(1) |
| (1)   | 4811(1) | 7961(1)  | 334(1)  | 26(1) |
| (8)   | 4026(2) | 7151(2)  | 1314(1) | 25(1) |
| 9)    | 3680(2) | 7270(2)  | 1978(1) | 32(1) |
| 10)   | 2803(2) | 6581(2)  | 2123(1) | 43(1) |
| 11)   | 2233(2) | 5757(2)  | 1605(2) | 54(1) |
| 2)    | 2553(2) | 5628(2)  | 942(2)  | 50(1) |
| .3)   | 3438(2) | 6314(2)  | 796(1)  | 34(1) |
| 4)    | 6260(2) | 7408(2)  | 1394(1) | 23(1) |
| 5)    | 7071(2) | 8343(2)  | 1170(1) | 30(1) |
| 6)    | 6433(2) | 6233(2)  | 977(1)  | 29(1) |
| )     | 7473(1) | 5754(1)  | 1285(1) | 40(1) |
| 2)    | 5681(1) | 5350(1)  | 994(1)  | 38(1) |
| 3)    | 6430(1) | 6394(1)  | 260(1)  | 45(1) |
| 17)   | 6606(2) | 7122(2)  | 2230(1) | 22(1) |
| 18)   | 7460(2) | 7783(2)  | 2712(1) | 25(1) |
| 19)   | 7772(2) | 7544(2)  | 3470(1) | 28(1) |
| 20)   | 7231(2) | 6628(2)  | 3761(1) | 26(1) |
| 21)   | 6386(2) | 5942(2)  | 3295(1) | 25(1) |
| 22)   | 6088(2) | 6185(2)  | 2538(1) | 23(1) |
| 2)    | 7557(1) | 6423(2)  | 4513(1) | 36(1) |
| 27)   | 6564(3) | 5553(3)  | 6174(1) | 55(1) |
| )     | 6368(2) | 4623(2)  | 4982(1) | 46(1) |

| C(24) | 6308(2) | 4553(2) | 5623(1) | 39(1)  |
|-------|---------|---------|---------|--------|
| O(4)  | 5972(2) | 3551(2) | 5901(1) | 62(1)  |
| C(25) | 5683(5) | 2502(3) | 5398(2) | 102(2) |
| C(26) | 5075(3) | 1634(3) | 5718(2) | 82(1)  |
|       |         |         |         |        |

| Cl(1)-C(1)  | 1.746(2) |
|-------------|----------|
| C(1)-C(2)   | 1.377(3) |
| C(1)-C(6)   | 1.384(3) |
| C(2)-C(3)   | 1.392(3) |
| C(2)-H(1)   | 0.9500   |
| C(3)-C(4)   | 1.393(3) |
| C(3)-H(2)   | 0.9500   |
| C(4)-C(5)   | 1.405(3) |
| C(4)-C(7)   | 1.553(3) |
| C(5)-C(6)   | 1.388(3) |
| C(5)-H(3)   | 0.9500   |
| C(6)-H(4)   | 0.9500   |
| C(7)-O(1)   | 1.424(2) |
| C(7)-C(8)   | 1.545(3) |
| C(7)-C(14)  | 1.609(2) |
| O(1)-H(5)   | 0.8400   |
| C(8)-C(13)  | 1.397(3) |
| C(8)-C(9)   | 1.398(3) |
| C(9)-C(10)  | 1.381(3) |
| C(9)-H(6)   | 0.9500   |
| C(10)-C(11) | 1.379(4) |
| C(10)-H(7)  | 0.9500   |
| C(11)-C(12) | 1.384(4) |
| C(11)-H(8)  | 0.9500   |
| C(12)-C(13) | 1.386(3) |
| C(12)-H(9)  | 0.9500   |
| C(13)-H(10) | 0.9500   |
| C(14)-C(17) | 1.538(2) |
| C(14)-C(15) | 1.546(3) |
| C(14)-C(16) | 1.550(3) |
| C(15)-H(11) | 0.9800   |
| C(15)-H(12) | 0.9800   |
| C(15)-H(13) | 0.9800   |
| C(16)-F(2)  | 1.336(2) |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for C:.

| C(16)-F(3)      | 1.339(2)   |
|-----------------|------------|
| C(16)-F(1)      | 1.353(2)   |
| C(17)-C(18)     | 1.395(3)   |
| C(17)-C(22)     | 1.399(3)   |
| C(18)-C(19)     | 1.388(3)   |
| C(18)-H(14)     | 0.9500     |
| C(19)-C(20)     | 1.381(3)   |
| C(19)-H(15)     | 0.9500     |
| C(20)-O(2)      | 1.374(2)   |
| C(20)-C(21)     | 1.390(3)   |
| C(21)-C(22)     | 1.387(3)   |
| C(21)-H(16)     | 0.9500     |
| C(22)-H(17)     | 0.9500     |
| O(2)-H(18)      | 0.8400     |
| C(27)-C(24)     | 1.484(3)   |
| C(27)-H(19)     | 0.9800     |
| C(27)-H(20)     | 0.9800     |
| C(27)-H(21)     | 0.9800     |
| O(5)-C(24)      | 1.210(3)   |
| C(24)-O(4)      | 1.324(3)   |
| O(4)-C(25)      | 1.475(4)   |
| C(25)-C(26)     | 1.420(5)   |
| C(25)-H(26)     | 0.9900     |
| C(25)-H(27)     | 0.9900     |
| C(26)-H(23)     | 0.9800     |
| C(26)-H(24)     | 0.9800     |
| C(26)-H(25)     | 0.9800     |
| C(2)-C(1)-C(6)  | 120.50(18) |
| C(2)-C(1)-Cl(1) | 119.22(16) |
| C(6)-C(1)-Cl(1) | 120.26(16) |
| C(1)-C(2)-C(3)  | 119.30(18) |
| C(1)-C(2)-H(1)  | 120.3      |
| C(3)-C(2)-H(1)  | 120.3      |
| C(2)-C(3)-C(4)  | 122.16(17) |
| C(2)-C(3)-H(2)  | 118.9      |

| C(4)-C(3)-H(2)    | 118.9      |
|-------------------|------------|
| C(3)-C(4)-C(5)    | 116.80(17) |
| C(3)-C(4)-C(7)    | 119.22(16) |
| C(5)-C(4)-C(7)    | 123.96(16) |
| C(6)-C(5)-C(4)    | 121.59(18) |
| C(6)-C(5)-H(3)    | 119.2      |
| C(4)-C(5)-H(3)    | 119.2      |
| C(1)-C(6)-C(5)    | 119.61(18) |
| C(1)-C(6)-H(4)    | 120.2      |
| C(5)-C(6)-H(4)    | 120.2      |
| O(1)-C(7)-C(8)    | 108.61(14) |
| O(1)-C(7)-C(4)    | 109.01(14) |
| C(8)-C(7)-C(4)    | 109.49(14) |
| O(1)-C(7)-C(14)   | 102.73(13) |
| C(8)-C(7)-C(14)   | 115.96(14) |
| C(4)-C(7)-C(14)   | 110.67(14) |
| C(7)-O(1)-H(5)    | 109.5      |
| C(13)-C(8)-C(9)   | 117.23(18) |
| C(13)-C(8)-C(7)   | 119.47(16) |
| C(9)-C(8)-C(7)    | 123.24(17) |
| C(10)-C(9)-C(8)   | 121.7(2)   |
| C(10)-C(9)-H(6)   | 119.2      |
| C(8)-C(9)-H(6)    | 119.2      |
| C(11)-C(10)-C(9)  | 120.3(2)   |
| C(11)-C(10)-H(7)  | 119.9      |
| C(9)-C(10)-H(7)   | 119.9      |
| C(10)-C(11)-C(12) | 119.2(2)   |
| C(10)-C(11)-H(8)  | 120.4      |
| C(12)-C(11)-H(8)  | 120.4      |
| C(11)-C(12)-C(13) | 120.6(2)   |
| C(11)-C(12)-H(9)  | 119.7      |
| C(13)-C(12)-H(9)  | 119.7      |
| C(12)-C(13)-C(8)  | 121.0(2)   |
| C(12)-C(13)-H(10) | 119.5      |
| C(8)-C(13)-H(10)  | 119.5      |
| C(17)-C(14)-C(15) | 111.90(15) |

| C(17)-C(14)-C(16) | 107.15(15) |
|-------------------|------------|
| C(15)-C(14)-C(16) | 104.72(15) |
| C(17)-C(14)-C(7)  | 113.40(14) |
| C(15)-C(14)-C(7)  | 107.24(14) |
| C(16)-C(14)-C(7)  | 112.14(15) |
| C(14)-C(15)-H(11) | 109.5      |
| C(14)-C(15)-H(12) | 109.5      |
| H(11)-C(15)-H(12) | 109.5      |
| C(14)-C(15)-H(13) | 109.5      |
| H(11)-C(15)-H(13) | 109.5      |
| H(12)-C(15)-H(13) | 109.5      |
| F(2)-C(16)-F(3)   | 106.25(16) |
| F(2)-C(16)-F(1)   | 105.60(16) |
| F(3)-C(16)-F(1)   | 104.59(15) |
| F(2)-C(16)-C(14)  | 115.18(16) |
| F(3)-C(16)-C(14)  | 114.55(16) |
| F(1)-C(16)-C(14)  | 109.79(16) |
| C(18)-C(17)-C(22) | 117.24(16) |
| C(18)-C(17)-C(14) | 121.14(16) |
| C(22)-C(17)-C(14) | 121.61(16) |
| C(19)-C(18)-C(17) | 121.79(17) |
| C(19)-C(18)-H(14) | 119.1      |
| C(17)-C(18)-H(14) | 119.1      |
| C(20)-C(19)-C(18) | 119.72(17) |
| C(20)-C(19)-H(15) | 120.1      |
| C(18)-C(19)-H(15) | 120.1      |
| O(2)-C(20)-C(19)  | 118.10(17) |
| O(2)-C(20)-C(21)  | 121.94(18) |
| C(19)-C(20)-C(21) | 119.96(16) |
| C(22)-C(21)-C(20) | 119.73(17) |
| C(22)-C(21)-H(16) | 120.1      |
| C(20)-C(21)-H(16) | 120.1      |
| C(21)-C(22)-C(17) | 121.54(17) |
| C(21)-C(22)-H(17) | 119.2      |
| C(17)-C(22)-H(17) | 119.2      |
| C(20)-O(2)-H(18)  | 109.5      |

| C(24)-C(27)-H(19) | 109.5    |
|-------------------|----------|
| C(24)-C(27)-H(20) | 109.5    |
| H(19)-C(27)-H(20) | 109.5    |
| C(24)-C(27)-H(21) | 109.5    |
| H(19)-C(27)-H(21) | 109.5    |
| H(20)-C(27)-H(21) | 109.5    |
| O(5)-C(24)-O(4)   | 122.1(2) |
| O(5)-C(24)-C(27)  | 125.2(2) |
| O(4)-C(24)-C(27)  | 112.7(2) |
| C(24)-O(4)-C(25)  | 117.2(2) |
| C(26)-C(25)-O(4)  | 109.4(3) |
| C(26)-C(25)-H(26) | 109.8    |
| O(4)-C(25)-H(26)  | 109.8    |
| C(26)-C(25)-H(27) | 109.8    |
| O(4)-C(25)-H(27)  | 109.8    |
| H(26)-C(25)-H(27) | 108.2    |
| C(25)-C(26)-H(23) | 109.5    |
| C(25)-C(26)-H(24) | 109.5    |
| H(23)-C(26)-H(24) | 109.5    |
| C(25)-C(26)-H(25) | 109.5    |
| H(23)-C(26)-H(25) | 109.5    |
| H(24)-C(26)-H(25) | 109.5    |
|                   |          |

|       | U <sup>11</sup> | $\mathrm{U}^{22}$ | $U^{33}$ | $U^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
|-------|-----------------|-------------------|----------|----------|-------------------|-------------------|
| Cl(1) | 54(1)           | 27(1)             | 67(1)    | -11(1)   | 28(1)             | -3(1)             |
| C(1)  | 29(1)           | 24(1)             | 41(1)    | -4(1)    | 14(1)             | -3(1)             |
| C(2)  | 34(1)           | 26(1)             | 37(1)    | 7(1)     | 11(1)             | 2(1)              |
| C(3)  | 30(1)           | 29(1)             | 23(1)    | 4(1)     | 6(1)              | -1(1)             |
| C(4)  | 21(1)           | 25(1)             | 22(1)    | 1(1)     | 5(1)              | -1(1)             |
| C(5)  | 28(1)           | 32(1)             | 21(1)    | 1(1)     | 1(1)              | 5(1)              |
| C(6)  | 30(1)           | 36(1)             | 28(1)    | -9(1)    | 5(1)              | -1(1)             |
| C(7)  | 23(1)           | 26(1)             | 14(1)    | 3(1)     | 3(1)              | 1(1)              |
| O(1)  | 28(1)           | 33(1)             | 14(1)    | 1(1)     | 3(1)              | 1(1)              |
| C(8)  | 22(1)           | 26(1)             | 25(1)    | 6(1)     | 4(1)              | 3(1)              |
| C(9)  | 31(1)           | 36(1)             | 30(1)    | 9(1)     | 10(1)             | 5(1)              |
| C(10) | 38(1)           | 50(1)             | 47(1)    | 16(1)    | 22(1)             | 6(1)              |
| C(11) | 38(1)           | 50(2)             | 79(2)    | 13(1)    | 25(1)             | -9(1)             |
| C(12) | 40(1)           | 44(1)             | 66(2)    | -2(1)    | 9(1)              | -15(1)            |
| C(13) | 31(1)           | 34(1)             | 36(1)    | -1(1)    | 5(1)              | -5(1)             |
| C(14) | 24(1)           | 26(1)             | 21(1)    | 2(1)     | 6(1)              | 1(1)              |
| C(15) | 26(1)           | 36(1)             | 30(1)    | 7(1)     | 9(1)              | -2(1)             |
| C(16) | 31(1)           | 32(1)             | 25(1)    | 1(1)     | 7(1)              | 6(1)              |
| F(1)  | 34(1)           | 41(1)             | 44(1)    | -2(1)    | 6(1)              | 13(1)             |
| F(2)  | 41(1)           | 30(1)             | 42(1)    | -10(1)   | 9(1)              | -3(1)             |
| F(3)  | 64(1)           | 49(1)             | 26(1)    | 0(1)     | 17(1)             | 17(1)             |
| C(17) | 20(1)           | 22(1)             | 21(1)    | 2(1)     | 3(1)              | 3(1)              |
| C(18) | 22(1)           | 24(1)             | 28(1)    | 3(1)     | 4(1)              | -2(1)             |
| C(19) | 24(1)           | 29(1)             | 26(1)    | -3(1)    | -3(1)             | -1(1)             |
| C(20) | 24(1)           | 32(1)             | 18(1)    | 1(1)     | 0(1)              | 6(1)              |
| C(21) | 22(1)           | 27(1)             | 24(1)    | 6(1)     | 4(1)              | 1(1)              |
| C(22) | 20(1)           | 23(1)             | 24(1)    | 2(1)     | 1(1)              | 0(1)              |
| O(2)  | 35(1)           | 50(1)             | 19(1)    | 5(1)     | -2(1)             | -3(1)             |
| C(27) | 65(2)           | 61(2)             | 42(1)    | -9(1)    | 17(1)             | -15(1)            |
| O(5)  | 50(1)           | 59(1)             | 32(1)    | 3(1)     | 14(1)             | -3(1)             |
| C(24) | 38(1)           | 46(1)             | 35(1)    | 4(1)     | 13(1)             | 3(1)              |

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for C:. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

| O(4)  | 105(2) | 42(1) | 49(1)  | 2(1)   | 40(1) | -1(1) |
|-------|--------|-------|--------|--------|-------|-------|
| C(25) | 195(5) | 47(2) | 85(3)  | -10(2) | 72(3) | -4(2) |
| C(26) | 62(2)  | 62(2) | 123(3) | -26(2) | 21(2) | 9(2)  |
|       |        |       |        |        |       |       |

|       | Х    | У     | Z    | U(eq) |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| H(1)  | 4032 | 11948 | 774  | 38    |
| H(2)  | 4264 | 9971  | 390  | 32    |
| H(3)  | 5555 | 8974  | 2523 | 34    |
| H(4)  | 5350 | 10954 | 2907 | 38    |
| H(5)  | 4123 | 8119  | 137  | 38    |
| H(6)  | 4058 | 7840  | 2339 | 38    |
| H(7)  | 2591 | 6674  | 2582 | 51    |
| H(8)  | 1626 | 5285  | 1703 | 65    |
| H(9)  | 2164 | 5063  | 582  | 61    |
| H(10) | 3647 | 6214  | 337  | 41    |
| H(11) | 7044 | 9103  | 1439 | 45    |
| H(12) | 6829 | 8493  | 634  | 45    |
| H(13) | 7853 | 8026  | 1294 | 45    |
| H(14) | 7838 | 8413  | 2517 | 30    |
| H(15) | 8355 | 8009  | 3786 | 33    |
| H(16) | 6015 | 5310  | 3493 | 30    |
| H(17) | 5518 | 5704  | 2223 | 28    |
| H(18) | 7135 | 5889  | 4629 | 54    |
| H(19) | 6832 | 6263  | 5946 | 83    |
| H(20) | 7160 | 5293  | 6605 | 83    |
| H(21) | 5871 | 5764  | 6333 | 83    |
| H(26) | 5207 | 2770  | 4911 | 123   |
| H(27) | 6391 | 2133  | 5315 | 123   |
| H(23) | 5549 | 1372  | 6199 | 123   |
| H(24) | 4888 | 934   | 5387 | 123   |
| H(25) | 4368 | 1999  | 5790 | 123   |
|       |      |       |      |       |

Table 5. Hydrogen coordinates ( x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10  $^{3}$ )

for C:.

Table 6. Torsion angles [°] for C:.

| C(6)-C(1)-C(2)-C(3)     | 1.3(3)      |
|-------------------------|-------------|
| Cl(1)-C(1)-C(2)-C(3)    | 179.70(15)  |
| C(1)-C(2)-C(3)-C(4)     | 0.5(3)      |
| C(2)-C(3)-C(4)-C(5)     | -1.7(3)     |
| C(2)-C(3)-C(4)-C(7)     | 176.88(17)  |
| C(3)-C(4)-C(5)-C(6)     | 1.2(3)      |
| C(7)-C(4)-C(5)-C(6)     | -177.32(17) |
| C(2)-C(1)-C(6)-C(5)     | -1.8(3)     |
| Cl(1)-C(1)-C(6)-C(5)    | 179.82(15)  |
| C(4)-C(5)-C(6)-C(1)     | 0.5(3)      |
| C(3)-C(4)-C(7)-O(1)     | 13.5(2)     |
| C(5)-C(4)-C(7)-O(1)     | -168.02(16) |
| C(3)-C(4)-C(7)-C(8)     | -105.21(18) |
| C(5)-C(4)-C(7)-C(8)     | 73.3(2)     |
| C(3)-C(4)-C(7)-C(14)    | 125.76(17)  |
| C(5)-C(4)-C(7)-C(14)    | -55.7(2)    |
| O(1)-C(7)-C(8)-C(13)    | 21.1(2)     |
| C(4)-C(7)-C(8)-C(13)    | 140.03(18)  |
| C(14)-C(7)-C(8)-C(13)   | -93.9(2)    |
| O(1)-C(7)-C(8)-C(9)     | -156.28(17) |
| C(4)-C(7)-C(8)-C(9)     | -37.3(2)    |
| C(14)-C(7)-C(8)-C(9)    | 88.7(2)     |
| C(13)-C(8)-C(9)-C(10)   | 0.8(3)      |
| C(7)-C(8)-C(9)-C(10)    | 178.22(19)  |
| C(8)-C(9)-C(10)-C(11)   | -0.7(3)     |
| C(9)-C(10)-C(11)-C(12)  | 0.3(4)      |
| C(10)-C(11)-C(12)-C(13) | 0.1(4)      |
| C(11)-C(12)-C(13)-C(8)  | 0.0(4)      |
| C(9)-C(8)-C(13)-C(12)   | -0.4(3)     |
| C(7)-C(8)-C(13)-C(12)   | -178.0(2)   |
| O(1)-C(7)-C(14)-C(17)   | -172.27(14) |
| C(8)-C(7)-C(14)-C(17)   | -54.0(2)    |
| C(4)-C(7)-C(14)-C(17)   | 71.49(18)   |
| O(1)-C(7)-C(14)-C(15)   | 63.69(17)   |
| C(8)-C(7)-C(14)-C(15)   | -178.02(15) |
|-------------------------|-------------|
| C(4)-C(7)-C(14)-C(15)   | -52.55(18)  |
| O(1)-C(7)-C(14)-C(16)   | -50.73(18)  |
| C(8)-C(7)-C(14)-C(16)   | 67.55(19)   |
| C(4)-C(7)-C(14)-C(16)   | -166.98(14) |
| C(17)-C(14)-C(16)-F(2)  | 71.24(19)   |
| C(15)-C(14)-C(16)-F(2)  | -169.77(15) |
| C(7)-C(14)-C(16)-F(2)   | -53.8(2)    |
| C(17)-C(14)-C(16)-F(3)  | -165.07(15) |
| C(15)-C(14)-C(16)-F(3)  | -46.1(2)    |
| C(7)-C(14)-C(16)-F(3)   | 69.9(2)     |
| C(17)-C(14)-C(16)-F(1)  | -47.8(2)    |
| C(15)-C(14)-C(16)-F(1)  | 71.23(18)   |
| C(7)-C(14)-C(16)-F(1)   | -172.81(14) |
| C(15)-C(14)-C(17)-C(18) | 8.1(2)      |
| C(16)-C(14)-C(17)-C(18) | 122.31(18)  |
| C(7)-C(14)-C(17)-C(18)  | -113.41(19) |
| C(15)-C(14)-C(17)-C(22) | -171.31(17) |
| C(16)-C(14)-C(17)-C(22) | -57.1(2)    |
| C(7)-C(14)-C(17)-C(22)  | 67.2(2)     |
| C(22)-C(17)-C(18)-C(19) | -1.4(3)     |
| C(14)-C(17)-C(18)-C(19) | 179.25(17)  |
| C(17)-C(18)-C(19)-C(20) | 0.2(3)      |
| C(18)-C(19)-C(20)-O(2)  | -179.60(17) |
| C(18)-C(19)-C(20)-C(21) | 0.6(3)      |
| O(2)-C(20)-C(21)-C(22)  | -179.99(17) |
| C(19)-C(20)-C(21)-C(22) | -0.2(3)     |
| C(20)-C(21)-C(22)-C(17) | -1.0(3)     |
| C(18)-C(17)-C(22)-C(21) | 1.8(3)      |
| C(14)-C(17)-C(22)-C(21) | -178.84(16) |
| O(5)-C(24)-O(4)-C(25)   | 0.7(4)      |
| C(27)-C(24)-O(4)-C(25)  | 179.4(3)    |
| C(24)-O(4)-C(25)-C(26)  | -165.2(3)   |
|                         |             |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for C: [Å and °].

| d(D-H) | d(HA)                  | d(DA)                                | <(DHA)                                                         |
|--------|------------------------|--------------------------------------|----------------------------------------------------------------|
| 0.95   | 2.61                   | 3.550(2)                             | 169.3                                                          |
| 0.84   | 2.03                   | 2.8578(19)                           | 170.6                                                          |
|        | d(D-H)<br>0.95<br>0.84 | d(D-H) d(HA)   0.95 2.61   0.84 2.03 | d(D-H) d(HA) d(DA)   0.95 2.61 3.550(2)   0.84 2.03 2.8578(19) |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z #2 x-1/2,-y+3/2,z-1/2

#### **Computational study**

DFT calculations were performed by the Gaussian 09 program using the B3LYP/6-311++G\*\* level of theory, and stationary points were confirmed by the frequency calculation with 0 negative frequency. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

#### 1 with a Me group as $R^1$ , E = -722.10528297 hartree, no negative

frequency,

HOMO -7.262 eV, LUMO -3.372 eV

|     | Coordinates (Å) |            |            |
|-----|-----------------|------------|------------|
|     | Х               | Y          | Ζ          |
| C1  | 3.0950618       | -0.2297607 | 0.0006503  |
| C2  | 2.0610064       | -1.2776761 | 0.0000579  |
| C3  | 0.7473633       | -0.9855411 | -0.0000022 |
| C4  | 0.2554357       | 0.3956353  | 0.0001281  |
| C5  | 1.2809206       | 1.4399877  | -0.0000604 |
| C6  | 2.5964873       | 1.1572672  | -0.0000451 |
| H7  | 2.4116130       | -2.3033171 | -0.0001282 |
| H8  | 0.0316151       | -1.7947193 | -0.0001350 |
| Н9  | 0.9711211       | 2.4761383  | -0.0003198 |
| H10 | 3.3457331       | 1.9406728  | -0.0003489 |
| O11 | 4.2925326       | -0.4901126 | -0.0004420 |
| C12 | -1.0750041      | 0.7036553  | 0.0001467  |

| F20 | -2.0183603 | -1.2100699 | -1.0883966 |
|-----|------------|------------|------------|
| F19 | -3.3716479 | 0.0856035  | -0.0005919 |
| F18 | -2.0191393 | -1.2097069 | 1.0886369  |
| C17 | -2.1156721 | -0.4077398 | -0.0000570 |
| H16 | -2.3022917 | 2.2306963  | -0.8762405 |
| H15 | -0.9059881 | 2.8629177  | 0.0011792  |
| H14 | -2.3035214 | 2.2299408  | 0.8760349  |
| C13 | -1.6633012 | 2.0851940  | 0.0002915  |

1 with a Ph group as  $R^1$ , E = -913.88559866 hartree, no negative

frequency,

HOMO –7.129 eV, LUMO –3.441 eV

|     | Coordinates (Å) |            |            |
|-----|-----------------|------------|------------|
|     | Х               | Y          | Z          |
| C1  | -3.6671820      | -1.0880535 | -0.1026871 |
| C2  | -3.4200050      | 0.3555640  | 0.0612600  |
| C3  | -2.1769295      | 0.8711285  | 0.0795088  |
| C4  | -0.9889711      | 0.0236126  | -0.0448923 |
| C5  | -1.2281051      | -1.4071679 | -0.2401109 |
| C6  | -2.4684718      | -1.9283744 | -0.2696471 |
| H7  | -4.2953269      | 0.9855116  | 0.1704391  |
| H8  | -2.0494955      | 1.9364604  | 0.2083093  |
| H9  | -0.3691673      | -2.0486526 | -0.3872426 |
| H10 | -2.6374573      | -2.9867245 | -0.4320398 |
| O11 | -4.7991940      | -1.5580046 | -0.1116343 |
| C12 | 0.2878457       | 0.5129465  | -0.0021695 |
| C13 | 0.5288853       | 2.0135928  | 0.0950881  |
| F14 | 0.0305584       | 2.5296134  | 1.2481029  |
| F15 | 1.8358062       | 2.3270391  | 0.0693712  |
| F16 | -0.0544277      | 2.6996594  | -0.9204618 |
| C17 | 1.4982091       | -0.3501320 | -0.0046004 |
| C18 | 2.4389559       | -0.2788834 | -1.0425257 |
| C19 | 1.7190927       | -1.2495903 | 1.0481684  |

| C20 | 3.5598368 | -1.1024531 | -1.0351512 |
|-----|-----------|------------|------------|
| H21 | 2.2858862 | 0.4116502  | -1.8635765 |
| C22 | 2.8492979 | -2.0636657 | 1.0589854  |
| H23 | 1.0087317 | -1.2980826 | 1.8654394  |
| C24 | 3.7698651 | -1.9949908 | 0.0159083  |
| H25 | 4.2714109 | -1.0459826 | -1.8508635 |
| H26 | 3.0094805 | -2.7478615 | 1.8843299  |
| H27 | 4.6481131 | -2.6302888 | 0.0223601  |
|     |           |            |            |

# <sup>1</sup>H and <sup>13</sup> C NMR spectrums

## pre-NHC B





#### 3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-phenylpropan-1-one. (3aa)



1-(4-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one. (3ab)



3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(4-methoxycarbonylphenyl)-2-methylpropan-1-one. (3ac)



#### 3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(4-methylphenyl)propan-1-one. (3ae)



3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(4-methoxyphenyl)-2-methylpropan-1-one. (3af)



#### 1-(3-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one. (3ag)



2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-3,3,3-trifluoro-1-(3-methoxyphenyl)-2methylpropan-1-one. (3ai)







3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(1-naphthyl)propan-1-one. (3aj)









3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(2-pyridyl)propan-1-one. (3am)



3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-(3-pyridyl)propan-1-one. (3al)



3,3,3-Trifluoro-2-(4-hydroxyphenyl)-1-(1*H*-indol-3-yl)-2-methylpropan-1-one (3an)



#### 5,5,5-Trifluoro-4-(4-hydroxyphenyl)-4-methyl-1-phenylprop-1-en-3-one (3ao)





#### 1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-5-phenylpentan-3-one (3aq)



6-Benzyloxy-1,1,1-trifluoro-2-(4-hydroxyphenyl)-2-methylhexan-3-one (3ar)



Methyl 7,7,7-trifluoro-6-(4-hydroxyphenyl)-6-methyl-5-oxoheptanoate (3as)



#### 1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2,4-dimethylpentan-3-one (3at)



1-Cyclohexyl-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methylpropan-1-one (3au)







#### 1-(2-Franyl)-2-(4-hydroxyphenyl)-2-(trifluoromethyl)pentan-1-one. (3bk)



### 4-(4-Hydroxyphenyl)-1-phenyl-4-(trifluoromethyl)heptan-3-one (3bq)



4-(4-Hydroxyphenyl)-5-methyl-1-phenyl-4-(trifluoromethyl)-3-hexanone (3cq)



(1*R*\*, 2*S*\*)-3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (6aa-major)



(1*S*\*, 2*S*\*)-3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (6aa-minor)



(2R\*, 3S\*)-4,4,4-Trifluoro-2-(4-hydroxyphenyl)-2,3-dimethyl-1-pheny1butanol (7aa)



(2S\*, 3R\*)-1,1,1-Trifluoro-2-(4-hydroxyphenyl)-2,3-dimethyl-5-phenyl-3-pentanol (7aq)



3,3,3-Trifluoro-2-(4-hydroxyphenyl)-2-methyl-1,1-dipheny-1-propanol (8aa)

(1*S*\*, 2*S*\*)-1-(4-Chlorophenyl)-3,3,3-trifluoro-2-(4-hydroxyphenyl)-2-methyl-1-pheny-1-propanol (9aa)





(3S\*, 4S\*)-5,5,5-Trifluoro-4-(4-hydroxyphenyl)-4-methyl-3-phenyl-1-phenylpent-1-yn-3-ol (10aa)

(3*S*\*, 4*S*\*)*-tert*-Butyl 5,5,5-trifluoro-3-hydroxyl-4-(4-hydroxyphenyl)-4-methyl-3-phenylpentanoate (11aa)




(1*R*\*, 2*S*\*)-3,3,3-Trifluoro-2-methyl-1-pheny-2-[4-{(toluenesulfonyl)oxy}phenyl]-1-propanol (12aa)

## References

- <sup>1</sup> K. Terashima, T. Kawasaki-Takasuka, T. Agou, T. Kubota and T. Yamazaki, *Chem. Commun*, 2020, **56**, 3031.
- <sup>2</sup> N. Duarte and M. J. U. Ferreira, Org. Lett., 2007, 9, 489.
- <sup>3</sup> T. Suzuki, M. Tokunaga and Y. Wakatsuki Org. Lett. 2001, 3, 735.
- <sup>4</sup> Y. Kobayashi, M. Morita, N. Ogawa, D. Kondo and T. Tojo, Org. Biomol. Chem., 2016, 14, 10667
- <sup>5</sup> T. Fukuyama, M. T. Rahman, H. Mashima, H. Takahashi and I. Ryu, *Org. Chem. Front.*, 2017, **4**, 1863.
- <sup>6</sup> A. Khalafi-Nezhad, F. Panahi, R. Yousefi, Y. Gholamalipour and S. Sarrafi, *J. Iran. Chem. Soc.*, 2014, **11**, 1189.
- <sup>7</sup> M. S. Kerr, J. R. de Alaniz and T. Rovis, *J. Org. Chem.*, 2005, **70**, 5725.
- <sup>8</sup> X. Y. Chen, L. H. Sun and S. Ye, *Chem. Eur. J.*, 2013, **19**, 4441.