Supporting Information for

Organocatalytic C3-Functionalization of Indolizines: Synthesis of Biologically Important Indolizine Derivatives

Yi-Zhu Zhang^{a,‡}, Feng-Tao Sheng^{a,‡}, Zuoquan Zhu^{b,‡}, Zhi-Ming Li^a, Shu Zhang^{b,*}, Wei Tan^{a,*} and Feng Shi^{a,*}

^aSchool of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R.

China

^bDepartment of Radiation Oncology and the Department of Radiotherapy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China [‡]These authors contributed equally to this work. E-mail: fshi@jsnu.edu.cn; wtan@jsnu.edu.cn; zhangshu@njmu.edu.cn

Contents:

- 1. NMR spectra of products 3, 5, 7, 9, 11 and 13 (S2-S21)
- 2. X-ray single crystal data for compound 5 (S22-S23)
- 3. HPLC copies of 3aa (S24)

1. NMR spectra of products 3, 5, 7, 9, 11 and 13

^{13}C NMR (100 MHz, CDCl₃) of compound **3da**

S5

¹³C NMR (100 MHz, CDCl₃) of compound **3ea**

¹H NMR (400 MHz, *acetone-d*₆) of compound **3fa**

 ^{13}C NMR (100 MHz, CDCl_3) of compound 3fa

^{13}C NMR (100 MHz, CDCl_3) of compound 3ga

^{13}C NMR (100 MHz, CDCl₃) of compound **3ha**

¹H NMR (400 MHz, *acetone-d*₆) of compound **3ab**

¹³C NMR (100 MHz, *acetone-d*₆) of compound **3ac**

 ^{13}C NMR (100 MHz, *acetone-d*₆) of compound **3ad**

¹H NMR (400 MHz, *acetone-d*₆) of compound **3ae**

¹³C NMR (100 MHz, *acetone-d*₆) of compound **3ae**

¹H NMR (400 MHz, *acetone-d*₆) of compound **3af**

¹H NMR (400 MHz, *acetone-d*₆) of compound **3ag**

 ^{13}C NMR (100 MHz, CDCl_3) of compound 7

¹³C NMR (100 MHz, *acetone-d*₆) of compound **9**

2. X-ray single crystal data for compound 5

The thermal ellipsoid was drawn at the 30% probability level.

Identification code	sf20190530a_0m	
Empirical formula	C29 H20 F3 N O2	
Formula weight	471.46	
Temperature	296.15 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.333(4) Å	$\alpha = 88.838(5)$ °.
	b = 10.460(4) Å	β = 68.455(5) °.
	c = 11.583(5) Å	$\gamma = 79.684(6)$ °.

Volume	1144.2(8) Å ³
Z	2
Density (calculated)	1.368 Mg/m ³
Absorption coefficient	0.102 mm ⁻¹
F(000)	488
Theta range for data collection	2.672 to 25.678 °.
Index ranges	-12<=h<=9, -12<=k<=12, -14<=l<=13
Reflections collected	6041
Independent reflections	4240 [R(int) = 0.0168]
Completeness to theta = 25.242°	98.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7455 and 0.6815
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4240 / 0 / 327
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0555, wR2 = 0.1420
R indices (all data)	R1 = 0.0887, $wR2 = 0.1617$
Extinction coefficient	n/a
Largest diff. peak and hole	0.193 and -0.280 e.Å ⁻³

3. HPLC copies of 3aa

Enantioselective:

The enantiomeric excess: 10%, determined by HPLC (Daicel Chiralpak IA, hexane/2-propanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_R = 7.917$ (minor), $t_R = 10.400$ (major).