Electronic Supplementary information (ESI) for

Photoisomerization of azobenzene units drives the photochemical reaction cycles of proteorhodopsin and bacteriorhodopsin analogues

Shariful Haque^{1,2}, Takashi Kikukawa^{3,4} and Nobuyuki Tamaoki^{1,2*}

- 1. Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-
- ku, Sapporo, Japan
- 2. Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Japan
- 3. Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- 4. Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
- * Correspondence and request for materials should be addressed to N. Tamaoki (E-mail: tamaoki@es.hokudai.ac.jp)

Table of Contents

1.	List of chromophores and proteins tested in this study.	S3
2.	Photographs of POP expressed, and unexpressed E. coli cells	S4
	incubated with azo chromophores Az I and Az I	
3.	Flash-photolysis experimental and simulated curves of	S5
	Az II and PAz II	
4.	UV-vis absorption spectra of Az II bound POP mutant proteins	S6
5.	Photoinduced proton transfer reaction signals of Az II bound POP	S7
	and POP mutant proteins	
6.	Flash photolysis curves of PAz II-D97N, PAz II-D227N, and PAz	S8
	II-E108Q at different wavelengths	
7.	Flash photolysis experimental and simulated curves of BAz II at	S9
	different wavelengths	
8.	Fitting parameters of flash-photolysis data of PAz II	S10
9.	Fitting parameters of flash-photolysis data of BAz II	S11
10.	NMR Spectral data	S12
11.	High-resolution mass spectra data	S16
12.	SDS-PAGE analysis of proteins	S18

1. List of chromophores and proteins used in this study.

Table S1. List of chromophores and proteins used in this study.

Chromophores					
Az I	PAz I	PAz I-D97N	PAz I-E108Q	PAz I-D227N	BAz I
Az II	PAz II	PAz II-D97N	PAz II-E108Q	PAz II-D227N	BAz II
Retinal	PR				BR

2. Photographs of POP expressed, and unexpressed *E. coli* cells incubated with azo chromophores Az I and Az II

Fig. S1 A. Photographs of POP-expressed *E. coli* cells solids incubated with azo chromophore Az I (left) and Az II (right) and without azo chromophore (middle). **B.** Photograph of POP-unexpressed *E. coli* cells solids incubated with azo chromophores Az I (left) and Az II (right) and without azo chromophore (middle).

3. Flash-photolysis experimental and simulated curves of Az II and PAz II

Fig. S2 A. Experimental (red) and simulated (light gray) flash-photolysis curves at λ_{max} of Az II. **B.** Flash-induced light-minus-dark difference absorption spectra of PAz II over the spectral range 350-700 nm and the time range of 0.04–740.0 ms. Herein red and black lines represent the spectra at 0.04 and 740.0 ms, respectively. The direction of the evolution of the spectral changes are indicated by arrows. **C.** Experimental and simulated flash photolysis curves at three characteristic wavelengths (360 nm, 472 nm and 600 nm) of PAz II. Fitting curves are shown as light gray lines.

4. UV-vis absorption spectra of Az II bound POP mutant proteins

Fig. S3 UV-vis absorption spectra of PAz II (blank), PAz II-D97N (red), PAz II-D227N (green), and PAz II-E108Q (blue).

5. Photoinduced proton transfer reaction signals of Az II bound POP and POP mutant proteins

Fig. S4 Change in the signals for photoinduced proton transfer reaction of PAz II (blank), PAz II-D97N (red), PAz II-D227N (green), and PAz II-E108Q (blue).

6. Flash photolysis curves of PAz II-D97N, PAz II-D227N and PAz II-E108Q at different wavelengths

Fig. S5 Flash-induced absorbance changes at three characteristics wavelengths of **(A)** PAz II-D97N, **(B)** PAz II-D227N, and **(C)** PAz II-E108Q.

7. Flash photolysis experimental and simulated curves of BAz II at different wavelengths

Fig. S6 Experimental and simulated flash photolysis curves at three wavelengths (360, 462, and 600 nm) of BAz II. Fitting curves are provided in light gray.

8. Fitting parameters of flash photolysis data of PAz II

Table S2 Fitting parameters of the flash photolysis data of PAz II recorded at 472, 360,and 600 nm.

Wave- length (nm)	k₁ (s⁻¹)	k ₂ (s ⁻¹)	k₃ (s⁻¹)	ϵP_1 (M ⁻¹ cm ⁻¹)	ϵP_2 (M ⁻¹ cm ⁻¹)	ϵP_3 (M ⁻¹ cm ⁻¹)	ϵP_0 (M ⁻¹ cm ⁻¹)	RSS
472	1.77 × 10 ³ ± 62.22	102.0 ± 11.2 4	14.72 ± 0.5 9	130.8 ± 44.77	7.69 × 10 ³ ± 121.96	1.33 × 10⁴ ± 367.50	2.12 × 10 ⁴ ± 37.14	3.12 × 10 ⁻⁶
360	1.77 × 10 ³	102.0	14.72	7.78 × 10 ³ ± 93.92	4.88 × 10 ³ ± 94.51	1.18 × 10³ ± 116.97	14.40 ± 6.37	1.05 × 10 ⁻⁶
600	1.77 × 10 ³	102.0	14.72	2.96 × 10 ³ ± 50.77	1.25 × 10 ³ ± 51.08	991.0 ± 63.23	220.1 ± 32.75	3.04 × 10⁻ ⁶

9. Fitting parameters of flash-photolysis data of BAz II

Table S3 Fitting parameters of the flash photolysis data of BAz II recorded at 462, 360,and 600 nm.

Wave- length (nm)	k₁ (s⁻¹)	k₂ (s⁻¹)	k₃ (s⁻¹)	ϵP_1 (M ⁻¹ cm ⁻¹)	ϵP_2 (M ⁻¹ cm ⁻¹)	<i>€</i> Р ₃ (M⁻¹ cm⁻¹)	ϵP_0 (M ⁻¹ cm ⁻¹)	RSS
462	879.3 ± 40.4 1	127.1 ± 5.01	8.01 ± 0.3 0	614.5 ± 28.15	8.39 × 10 ³ ± 239.56	1.74 × 104 ± 104.36	2.24 × 10 ⁴ ± 32.48	1.59 × 10 ⁻⁶
360	879.3	127.1	8.01	7.05 × 10 ³ ± 33.98	5.06 × 10 ³ ± 64.57	1.93 × 10 ³ ± 53.26	549.3 ± 37.23	1.59 × 10 ⁻⁶
600	879.3	127.1	8.01	509.5 ± 21.91	478.8 ± 41.64	132.4 ± 34.34	334.3 ± 24.00	1.31 × 10 ⁻⁶

10. NMR Spectral data

S13

S15

S18

12. SDS-PAGE analysis of proteins

Fig. S13 SDS-PAGE analysis of azo chromophore Az I analogues of wild-type POP and POP mutant proteins. Lane M, protein molecular weight maker. Lanes 1-5 gave bands for wild-type PR, PAz I, PAz I-D97N, PAz I-D227N and PAz I-E108Q respectively. *,^A SDS-PAGE bands might be due to the formation of dimer and trimer of POP.

Fig. S14 SDS-PAGE analysis of azo chromophore Az II analogues of wild-type POP and POP mutant proteins. Lane M, protein molecular weight maker. Lanes 1-5 gave band for wild-type PR, PAz II, PAz II-D97N, PAz II-D227N and PAz II-E108Q respectively. * SDS-PAGE bands might be due to the formation of dimer of POP.

Fig. S15 SDS-PAGE analysis of azo analogues of BR. Lane M, protein molecular weight maker. Lanes 1-4 gave bands for wild-type BR, BOP, BAz I and BAz II respectively.