Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting information

Enantioselective Addition of Thiols to Trifluoromethyl ketimines:

synthesis of N,S-ketals

Xiaonan Wang, Yuan Gao, Zhonglin Wei, Jungang Cao, Dapeng Liang, Yingjie Lin, and Haifeng Duan

Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China

E-mail: linyj@jlu.edu.cn; duanhf@jlu.edu.cn; Tel: 0431-85168398

Table of Contents

1.	General information	S2
2.	Starting materials	S2
3.	Carried out with the corresponding quinidine-based catalys	st S2
4.	Reaction of heteroaromatic thiol or aliphatic ketimines	S2
5.	Optimization of the reaction conditions of benzyl thiol	S3
6.	The addition of thiols to other ketimines	S 4
7.	Reaction with Cbz and PMP protecting group ketimines	S 4
8.	General Procedure for the Addition of Thiols to Triflue	oromethyl
	ketimines and Characterization of Products 4a-4u	S4-S12
9.	NMR spectra of addition products 4a-4u	S13-S44
10	HPLC traces of compounds 4a-4u	S45-S65
11	.X-ray Crystallographic Date of compound 4a	S66-S67
12	.References	S67

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without purification. All solvents were obtained from commercial sources and were purified according to standard procedures. TLC was carried out on silica gel plates (HSGF 254), which were visualized with UV light and/or staining with phosphomolybdic acids solution. Purification of reaction products was carried out by column chromatography using silica gel (200-300 mesh).¹H, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Varian Mercury-300BB (300 MHz), a Bruker NMR Spectrometer (400 MHz). All chemical shifts (δ) were given in ppm. Chemical shifts are relative to the resonance of the deuterated solvent as the internal standard (CDCl3, δ 7.26 ppm for proton NMR, δ77.16 ppm for carbon NMR; DMSO-d6, δ2.50 ppm for proton NMR, δ39.52 ppm for carbon NMR). Date are presented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = double, t = triplet, q = quartet, m = multiplet), and coupling constant in hertz. Mass spectra were recorded on a Bruker Agilent 1290 MicrOTOF-Q II instrument. Melting points were measured on a melting points apparatus and were uncorrected. The enantioselectivity value determination was carried out using chiral HPLC (Waters) instrumentation with a Chiracel AD-H column and IA-3 column. Optical rotations were measured on a Shanghai ShenGuang SGW-2 polarimeter at λ = 589 nm. Optical rotations are reported as follows: $[\alpha]_D^{25}(c = g/100 \text{mL,solvent})$.

2. Starting Materials.

2,2,2-trifluroacetophenone were prepared according to literature procedures.¹ All trifluoromethyl ketimines **2** were prepared using reported procedures from corresponding 2,2,2-trifluroacetophenone.² All thiols **3** were purchased from commercial suppliers and used directly. The chiral catalysts **1a-1m** were prepared according to the procedure had been reported.³

3. Carried out with the corresponding quinidine-based catalyst

4. Reaction of heteroaromatic thiol or aliphatic ketimines

5.Optimization of the reaction conditions of benzyl thiol^[a]

entry	Cat	solvent	temp	Yield (%)	Ee (%)
1	1a	<i>m</i> -xylene	-40	84	38
2	1b	<i>m</i> -xylene	-40	88	43
3	1c	<i>m</i> -xylene	-40	86	12
4	1e	<i>m</i> -xylene	-40	88	20
5	1f	<i>m</i> -xylene	-40	79	-
6	1j	<i>m</i> -xylene	-40	80	-
7	1h	<i>m</i> -xylene	-40	83	48
8	11	<i>m</i> -xylene	-40	85	56
9	11	CH_2CI_2	-40	84	21
10	11	CHCl₃	-40	83	9
10	11	MTBE	-40	87	48
11	11	toluene	-40	87	57

^[a]Unless otherwise noted, reactions were carried out with 0.1 mmol of **2a**, 10 mol% of catalyst and 0.2 mmol of **3r** in 1 ml of solvent. ^[b]Yield of isolated product. ^[c]Determined by HPLC using a chiral stationary phase.

6.The addition of thiols to other ketimines

7. Reaction with Cbz and PMP protecting group ketimines

8.General Procedure for the Addition of Thiols to Trifluoromethyl ketimines and Characterization of Products 4a-4u.

Ketimines **2** (0.1 mmol) and catalyst **1e** (0.010 mmol, 10 mol %) were dissolved in *m*-xylene (1 ml), and 3Å MS (20 mg) was added. Until the mixture was cooled to -40 $^{\circ}$ C, the thiols **3** were added freshly in one portion. The mixture was stirred sharply at -40 $^{\circ}$ C until the reaction was judged to be completed by TLC. Then the solvent was removed in vacuo via evaporation. The crude product was purified by chromatography (PE/EA).

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-phenylethyl)carbamate (4a)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 40.1 mg, 96% yield, mp =125-127 $^{\circ}$ C, [a]_D²⁵=-12.8 (*c* =0.1, CHCl₃). The ee value was 94% (Chiralpak AD-H, hexane/*i*-PrOH =95:5, 254 nm, 1 mL/min, t_{major} =5.80 min, t_{minor} =5.57 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.64 – 7.57 (m, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.43 – 7.32 (m, 5H), 5.20 (s, 1H), 1.39 (s, 9H). ¹³**C NMR** (101 MHz, CDCl3) δ 152.0, 139.7, 136.9, 134.0, 129.1, 129.1, 128.1,

127.5, 127.3, 124.5 (q, J = 284.2 Hz), 81.4, 73.5 (q, J = 27.9 Hz), 28.0. ¹⁹**F NMR** (377 MHz, CDCl3) δ -74.26. **HRMS** (ESI) m/z: $[M + Na]^+$ calculated for C₁₉H₁₉ClF₃NO₂S 440.0664; found 440.0669. tert-butyl (S)-(2,2,2-trifluoro-1-phenyl-1-(o-tolylthio)ethyl)carbamate (**4b**)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 37.3 mg, 94% yield, mp =163-164 $^{\circ}$ C, [a]_D²⁵=-20.4 (*c*=0.1, CHCl₃). The ee value was 64% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} =5.63 min, t_{minor} = 6.05 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 2H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.16 (d, *J* = 8.7 Hz, 1H), 5.22 (s, 1H), 2.57 (s, 3H), 1.38 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.2, 145.2, 139.2, 130.8, 130.3, 129.0, 128.7, 128.5, 127.9, 127.7, 126.1, 124.5 (q, *J* = 284.4 Hz), 81.2, 73.3 (q, *J* = 28.0 Hz), 28.0, 21.0. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.55. **HRMS** (ESI) *m/z*: [M + Na]⁺ calculated for C₂₀H₂₂F₃NO₂S 420.1203; found 420.1216.

tert-butyl (S)-(2,2,2-trifluoro-1-((2-fluorophenyl)thio)-1-phenylethyl)carbamate (4c)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 37.3 mg, 92% yield, mp = $124-125 \,^{\circ}$ °C, [a]_D²⁵= -14.8 (*c* =0.1, CHCl₃). The ee value was 96% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} =6.92 min, t_{minor} =8.42 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.64 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.50 – 7.36 (m, 4H), 7.19 – 7.12 (m, 2H), 5.29 (s, 1H), 1.41 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ164.5 (d, J = 250.7 Hz), 152.1, 140.7, 133.0 (d, J = 8.3 Hz), 131.3, 129.1, 128.1, 127.6, 124.4, 124.2 (q, J = 284.4 Hz), 116.3, 116.1, 81.3, 73.9 (q, J = 29.1 Hz), 28.0. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.57, -103.26. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₁₉H₁₉F₄NO₂S 424.0960; found 424.0965.

tert-butyl (S)-(2,2,2-trifluoro-1-phenyl-1-(m-tolylthio)ethyl)carbamate (4d)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 36.1mg, 91% yield, mp =128-129 °C, [a]_D²⁵ = -5.16 (*c* =0.1, CHCl₃). The ee value was 99% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} = 5.91 min, t_{minor} = 6.80 min).

¹**H** NMR (400 MHz, CDCl₃) δ 7.69 – 7.61 (m, 2H), 7.48 – 7.37 (m, 5H), 7.27 (d, J = 1.1 Hz, 1H), 5.21 (s, 1H), 2.37 (s, 3H), 1.41 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 152.2, 139.0, 138.6, 135.5, 131.0, 128.9, 128.6, 128.4, 128.0, 127.6, 124.6 (q, J = 284.1 Hz), 120.3, 81.1, 73.2 (q, J = 28.3 Hz), 28.1, 21.2. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -74.04. HRMS (ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₂F₃NO₂S 420.1206; found 420.1216.

tert-butyl (S)-(1-((3-bromophenyl)thio)-2,2,2-trifluoro-1-phenylethyl)carbamate (4e)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 42.1 mg, 91% yield, mp =150-151 $^{\circ}$ C, [a]_D²⁵ =-35.2(*c* =0.1, CHCl₃). The ee value was 81% (Chiralpak IA-3, hexane/ethyl alcohol= 95:5, 254 nm, 1 mL/min, t_{major} =4.71 min, t_{minor} =4.45 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.63 (td, J = 8.8, 7.9, 2.9 Hz, 4H), 7.43 (dd, J = 5.1, 2.0 Hz, 3H), 7.29 (d, J = 6.9 Hz, 1H), 5.28 (s, 1H), 1.46 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.0, 140.7, 137.0, 133.3, 130.9, 130.1, 129.2, 128.6, 128.1, 127.4, 124.4 (q, J = 284.2 Hz), 122.3, 81.6, 73.7 (q, J = 28.7 Hz), 28.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.15. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₁₉H₁₉BrF₃NO₂S 484.0175; found 484.0164.

tert-butyl (S)-(2,2,2-trifluoro-1-((4-fluorophenyl)thio)-1-phenylethyl)carbamate (4f)

4f

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 36.5 mg, 91% yield, mp =157-158 $^{\circ}$ C, [a]_D²⁵ =-28 (*c* =0.1, CHCl₃). The ee value was 83% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} =5.93 min, t_{minor} =5.53 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.49 (m, 4H), 7.34 (d, J = 8.5 Hz, 2H), 7.08 (t, J = 8.7 Hz, 2H), 5.20 (s, 1H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ163.1 (d, J = 249.3 Hz), 152.1, 139.7, 137.1, 129.4 (d, J = 8.3 Hz), 129.2, 127.0, 124.3 (q, J = 284.1 Hz), 120.1, 115.2 (d, J = 21.8 Hz), 81.6, 73.0 (q, J = 28.2 Hz), 28.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.25, -109.82. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₁₉H₁₉F₄NO₂S 424.0954; found 424.0965

tert-butyl (S)-(1-((4-bromophenyl)thio)-2,2,2-trifluoro-1-phenylethyl)carbamate (4g)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 43.0 mg, 93% yield, mp

=112-113 $^{\circ}$ C , [a]_D²⁵ =-13.6 (*c* =0.1, CHCl₃). The ee value was 99% (Chiralpak IA-3, hexane/ethyl alcohol = 95:5, 214 nm, 1 mL/min, t_{major} =4.50 min, t_{minor} =5.12 min).

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.52 – 7.36 (m, 8H), 5.19 (s, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 139.9, 138.5, 134.0, 132.1, 129.1, 128.1, 127.9, 127.4, 125.3, 124.5 (q, J = 283.9 Hz), 81.4, 73.5 (q, J = 29.2 Hz), 28.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -74.27. HRMS (ESI) m/z: [M + Na]⁺ calculated for C₁₉H₁₉BrF₃NO₂S 484.0166; found 484.0164.

tert-butyl (S)-(2,2,2-trifluoro-1-phenyl-1-(p-tolylthio)ethyl)carbamate (4h)

4h

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 38.1 mg, 96% yield, mp = 104-105 $^{\circ}$ C, [a]_D²⁵ =-12 (*c* =0.1, CHCl₃). The ee value was 62% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} = 5.68 min, t_{minor} = 6.46 min).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.38 (dd, *J* = 5.2, 2.1 Hz, 3H), 7.17 (d, *J* = 7.9 Hz, 2H), 5.15 (s, 1H), 2.39 (s, 3H), 1.39 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 153.3, 140.6, 138.4, 135.4, 129.7, 128.9, 128.0, 127.5, 125.2, 124.6 (q, *J* = 284.3 Hz), 81.1, 73.1 (q, *J* = 27.6 Hz), 28.0, 21.4. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -74.18. HRMS (ESI) *m/z*: [M + Na]⁺ calculated for C₂₀H₂₂F₃NO₂S 420.1209; found 420.1216.

tert-butyl (S)-(2,2,2-trifluoro-1-(naphthalen-2-ylthio)-1-phenylethyl)carbamate (4i)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 40.2 mg, 93% yield, mp =165-166 $^{\circ}$ C, [a]_D²⁵ =-14.2 (*c* =0.1, CHCl₃). The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} =10.63 min, t_{minor} =8.49 min).

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.85 (dd, J = 20.4, 8.1 Hz, 3H), 7.66 (t, J = 7.3 Hz, 3H), 7.55 (dd, J = 6.8, 1.3 Hz, 2H), 7.44 – 7.37 (m, 3H), 5.20 (s, 1H), 1.38 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.2, 139.2, 136.0, 134.2, 133.8, 133.3, 129.0, 128.8, 128.3, 128.2, 128.1, 127.7, 127.6, 126.6, 126.0, 121.8 (q, J = 283.5 Hz), 81.2, 73.5 (q, J = 27.9 Hz), 28.1. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₂₃H₂₂F₃NO₂S 456.1225; found 456.1216.

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-(4-fluorophenyl)ethyl)carbamate (4j)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 40.8 mg, 94% yield, mp

=136-137 $^{\circ}$ C, [a]_D²⁵ =-13.4 (*c* =0.1, CHCl₃). The ee value was 72% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} =5.35 min, t_{minor} =4.64 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.49 (m, 4H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.08 (t, *J* = 8.7 Hz, 2H), 5.20 (s, 1H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ164.2 (d, *J* = 251.5 Hz), 140.6 (d, *J* = 8.8 Hz), 133.8, 130.7, 129.1, 128.1, 127.5, 124.6 (q, *J* = 284.3 Hz), 124.2, 116.0 (d, *J* = 21.8 Hz), 81.3, 73.3 (q, *J* = 25.5 Hz), 28.0. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.28, -109.82. HRMS (ESI) *m/z*: [M + Na]⁺ calculated for C₁₉H₁₈ClF₄NO₂S 458.0578; found 458.0575.

tert-butyl (S)-(1-(4-bromophenyl)-1-((4-chlorophenyl)thio)-2,2,2-trifluoroethyl)carbamate (4k)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 45.6 mg, 92% yield, mp =170-171 $^{\circ}$ C, [a]_D²⁵=-10.6 (*c* =0.1, CHCl₃). The ee value was 86% (Chiralpak IA-3, hexane/ethyl alcohol = 95:5, 254 nm, 1 mL/min, t_{major} =4.50 min, t_{minor} =4.28 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 6H), 7.34 (d, *J* = 8.5 Hz, 2H), 5.17 (s, 1H), 1.40 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 152.0, 142.3, 139.7, 137.2, 133.1, 131.3, 129.2, 126.8, 124.2 (q, *J* = 284.1 Hz), 123.7, 81.7, 73.1 (q, *J* = 28.8 Hz), 28.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.42. **HRMS** (ESI) *m/z*: [M + Na]⁺ calcd for C₁₉H₁₈BrClF₃NO₂S 517.9780; found 517.9774.

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-(p-tolyl)ethyl)carbamate (4)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 41.3 mg, 96% yield, mp =175-176 $^{\circ}$ C, [a]_D²⁵ =-8.4 (*c* =0.1, CHCl₃). The ee value was 66% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254 nm, 1 mL/min, t_{major} = 5.26 min, t_{minor} = 4.53 min).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 8.5, 4.6 Hz, 4H), 7.33 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 5.15 (s, 1H), 3.82 (s, 3H), 1.40 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 152.0, 139.7, 139.1, 136.8, 131.0, 129.0, 128.9, 127.4, 127.3, 124.5 (q, *J* = 284.0 Hz), 81.3, 73.4 (q, *J* = 28.5 Hz), 28.1, 21.1. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -74.49. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₁ClF₃NO₂S 454.0820; found 454.0826.

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)carbamate (4m)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 42.5 mg, 95% yield, mp

=146-147 $^{\circ}$ C, [a]_D²⁵ =-10.8 (*c* =0.1, CHCl₃). The ee value was 99% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254nm, 1 mL/min, t_{major}=6.80 min, t_{minor} =6.19 min).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 19.8, 8.3 Hz, 4H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 5.19 (s, 1H), 2.37 (s, 3H), 1.41 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 160.1, 139.6, 136.8, 132.6, 129.1, 128.7, 127.4, 124.49 (q, *J* = 284.0 Hz), 118.2, 113.5, 81.3, 73.6 (q, *J* = 24.3 Hz), 55.3, 28.1. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -74.43. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₁ClF₃NO₃S 470.0782; found 470.0775.

tert-butyl (S)-(1-(2-bromophenyl)-1-((4-chlorophenyl)thio)-2,2,2-trifluoroethyl)carbamate (4n)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 47.6 mg, 96% yield, mp =121-123 $^{\circ}$ C, [a]_D²⁵ =-8.6 (*c* =0.1, CHCl₃). The ee value was 99% (Chiralpak AD-H, hexane/*i*-PrOH= 95:5, 254nm, 1mL/min, t_{major}=11.04 min, t_{minor} =7.28 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.51 (t, J = 8.4 Hz, 3H), 7.39 – 7.30 (m, 4H), 5.20 (s, 1H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.8, 142.7, 139.7, 137.3, 136.1, 133.0, 132.1, 130.5, 130.1, 129.1, 127.2, 125.0 (q, J = 285.7 Hz), 81.2, 73.6 (q, J = 23.8 Hz), 28.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -71.69. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₁₉H₁₈BrClF₃NO₂S 517.9761; found 517.9774.

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-(naphthalen-2-yl)ethyl)carbamate (40)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 43.0 mg, 92% yield, mp =160-161 $^{\circ}$ C, [a]_D²⁵ =-15.4 (*c* =0.1, CHCl₃). The ee value was 84% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 254nm, 1mL/min, t_{major}=7.83 min, t_{minor} = 6.06 min).

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.92 – 7.81 (m, 3H), 7.68 (d, J = 8.7 Hz, 1H), 7.61 – 7.48 (m, 4H), 7.39 – 7.32 (m, 2H), 5.29 (s, 1H), 1.39 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.2, 139.2, 136.0, 134.2, 133.8, 133.3, 129.0, 128.8, 128.3, 128.2, 128.1, 127.7, 127.6, 126.6, 126.0, 124.6 (q, J = 285.0 Hz), 81.2, 73.5 (q, J = 27.9 Hz), 28.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.06. **HRMS** (ESI) m/z: [M + Na]⁺ calculated for C₂₃H₂₁ClF₃NO₂S 490.0841; found 490.0826.

tert-butyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-(3-fluorophenyl)ethyl)carbamate (4p)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 40.1 mg, 94% yield, mp = 123-124 $^{\circ}$ C, [a]_D²⁵ =-5.6 (*c* =0.1, CHCl₃). The ee value was 67% (ChiralpakAD-H, hexane/*i*-PrOH= 98:2, 254nm, 0.8 mL/min, t_{major}= 12.71 min, t_{minor} = 11.56 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.44 – 7.30 (m, 5H), 7.09 (dd, *J* = 8.1, 2.3, 1.1 Hz, 1H), 5.22 (s, 1H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ162.4 (d, *J* = 245.9 Hz), 152.0, 139.7, 137.2, 136.5, 135.4, 129.6 (d, *J* = 8.1 Hz), 129.2, 125.0 (d, *J* = 362.7 Hz), 124.3 (q, *J* = 284.2 Hz), 116.2 (d, *J* = 21.1 Hz), 115.1 (d, *J* = 24.6 Hz), 81.7, 73.0 (q, *J* = 27.1 Hz), 28.0. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.19, -112.68. **HRMS** (ESI) *m/z*: [M + Na]⁺ calculated for C₁₉H₁₈ClF₄NO₂S 458.0580; found 458.0575.

tert-butyl (S)-(2,2,2-trifluoro-1-phenyl-1-(phenylthio)ethyl)carbamate (4q)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 36.4 mg, 95% yield, mp = 132-133 $^{\circ}$ C, [a]_D²⁵ =-8.2 (*c* =0.1, CHCl₃). The ee value was 80% (ChiralpakAD-H, hexane/*i*-PrOH= 95:5, 254 nm, 1 mL/min, t_{major}= 6.42 min, t_{minor} = 7.28 min).

¹H NMR (400 MHz, CDCl₃) δ 7.64 (t, *J* = 6.5 Hz, 4H), 7.49 – 7.34 (m, 6H), 5.19 (s, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 138.5, 130.2, 129.0, 128.9, 128.8, 128.0, 127.5, 124.6 (q, *J* = 284.2 Hz), 120.3, 81.2,73.3 (q, *J* = 28.3 Hz), 28.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -74.21. HRMS (ESI) *m/z*: [M + Na]⁺ calculated for C₁₉H₂₀F₃NO₂S 406.1055; found 406.1059.

tert-butyl (S)-(1-(benzylthio)-2,2,2-trifluoro-1-phenylethyl)carbamate (4r)

Purified by silica gel column chromatography (PE/EA=20:1), white solid,35 mg, 88% yield, mp =134-135 $^{\circ}$ C , [a]_D²⁵ =-9.2(*c* =0.1, CHCl₃). The ee value was 20% (ChiralpakAD-H, hexane/ethyl alcohol= 95:5,254 nm, 1mL/min, t_{major}=6.19min, t_{minor} =7.11 min).

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.52 (m, 2H), 7.40 – 7.21 (m, 8H), 5.61 (s, 1H), 3.97 (d, J = 11.3 Hz, 1H), 3.86 (d, J = 11.3 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 135.7, 129.4, 129.0, 128.7, 128.1, 127.5, 127.3, 125.2 (q, J = 284.2 Hz), 120.9, 81.4, 71.6 (q, J = 29.0 Hz), 35.3, 28.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -74.43. HRMS (ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₂F₃NO₂S

420.1229; found 420.1216.

tert-butyl (S)-(1-((4-bromophenyl)thio)-2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)carbamate (4s)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 46.2 mg, 94% yield, mp = 116-117 $^{\circ}$ C, [a]_D²⁵ =-6.2(*c* =0.1, CHCl₃). The ee value was 92% (ChiralpakAD-H, hexane/ethyl alcohol = 95:5, 254nm, 1mL/min, t_{major}=7.23min, t_{minor} =5.77 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (p, *J* = 9.1, 8.6 Hz, 6H), 6.94 – 6.86 (m, 2H), 5.17 (s, 1H), 3.82 (s, 3H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.1, 152.0, 146.0, 139.8, 132.0, 128.8, 128.1, 125.2, 124.5 (q, *J* = 284.1 Hz), 113.5, 81.3, 73.3 (q, *J* = 28.8 Hz), 55.3, 28.1 ¹⁹**F NMR** (377 MHz, CDCl₃) δ -74.44. **HRMS** (ESI) *m/z*: $[M + Na]^+$ calculated for C₂₀H₂₁BrF₃NO₃S 514.0283; found 514.0270.

tert-butyl (S)-(1-(2-bromophenyl)-2,2,2-trifluoro-1-(m-tolylthio)ethyl)carbamate (4t)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 45.7 mg, 96% yield, mp =89-92 $^{\circ}$ C, [a]_D²⁵ =-10.6 (*c* =0.1, CHCl₃). The ee value was 99% (ChiralpakAD-H, hexane/*i*-PrOH = 95:5, 254nm, 1mL/min, t_{major}=7.57min, t_{minor} =6.45 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.27 (m, 3H), 7.25 – 7.11 (m, 3H), 5.15 (s, 1H), 2.34 (s, 3H), 1.41 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.9, 139.0, 136.0, 135.6, 131.4, 130.4, 129.9, 129.3, 128.7, 128.1, 127.1, 125.1 (q, *J* = 285.6 Hz), 122.4, 120.8, 80.9, 72.4 (q, *J* = 20.1 Hz), 28.1, 21.2. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -71.15. **HRMS** (ESI) *m/z*: [M + Na]⁺ calculated for C₂₀H₂₁BrF₃NO₂S 498.0343; found 498.0321.

benzyl (S)-(1-((4-chlorophenyl)thio)-2,2,2-trifluoro-1-phenylethyl)carbamate (4u)

Purified by silica gel column chromatography (PE/EA=20:1), white solid, 40.7 mg, 90% yield, mp =70-72 $^{\circ}$ C, [a]_D²⁵=-12.8 (*c* =0.1, CHCl₃). The ee value was 52% (Chiralpak AD-H, hexane/*i*-PrOH =95:5, 254 nm, 1 mL/min, t_{major} =12.29 min, t_{minor} =8.77 min).

¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 6.4, 2.5 Hz, 2H), 7.48 – 7.29 (m, 10H), 7.09 (d, J = 7.8 Hz,

2H), 5.40 (s, 1H), 5.23 (d, J = 11.8 Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.9, 139.6, 137.0, 135.5, 133.4, 129.4, 129.1, 128.7, 128.3, 127.5, 126.8, 124.3 (q, J = 284.1 Hz), 73.5 (q, J = 28.5 Hz), 67.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -74.22. HRMS (ESI) m/z: [M + Na]⁺ calculated for C₂₂H₁₇ClF₃NO₂S 474.1480; found 474.1452.

9. NMR spectra of addition products 4a-4u.

.....

10. HPLC traces of compounds 4a-4u.

	100	12405 017(2541111		0.020	2004/11	50.05	100040
	2	W2489 ChA 254nm	峰2 Book 2	8.420	40675	1.91	2661
1			Peak 2				

55

ım_	54nm	峰2	6.	800	98665	533	100.00	777047
Im	54nm	eak 2	0.	500	90005	533	100.00	1

	Channel Description	Peak Name	RT (min)	Area (確*sec)	<mark>% A</mark> rea	Height (礦)
1	W2489 ChA 254nm	reak 1	11.563	1321132	16.64	49667
2	W2489 ChA 254nm	Peak 2	12.718	6616103	83.36	236548

1	W2489 ChA 254nm	峰 Fak	6.451	4640	0.17	399
2	W2489 ChA 254nm	峰2	7.575	2675570	99.83	186494

11. X-ray Crystallographic Data of compound 4a

Sample Preparation for Crystal Growth: Take 100 mg of the sample, dissolve it in n-hexane : ethyl acetate =20:1(V:V) 30 mL, place it at room temperature, wait until the solvent evaporates and grow crystals, and measure the crystal with CCD Area Detector (D8 VENTURE PHOTON II).

Table 1 Crystal data and structure refinement for 4a

Identification code	1964673
Empirical formula	$C_{19}H_{19}CIF_3NO_2S$
Formula weight	417.9
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.6920(10)
b/Å	10.4626(12)
c/Å	12.9164(15)
α/°	106.067(2)
β/°	98.907(2)
γ/°	110.261(2)
Volume/ų	1017.1(2)
Z	2
ρ _{calc} g/cm ³	1.364
µ/mm ⁻¹	0.330
F(000)	432.0
Crystal size/mm ³	; × ; × ;
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.42 to 52.78

Index ranges	$-10 \leq h \leq 10,-13 \leq k \leq 13,-9 \leq l \leq 16$
Reflections collected	5748
Independent reflections	4007 [$R_{int} = 0.0147$, $R_{sigma} = 0.0301$]
Data/restraints/parameters	4007/0/247
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	R ₁ = 0.0556, wR ₂ = 0.1462
Final R indexes [all data]	R ₁ = 0.0744, wR ₂ = 0.1635
Largest diff. peak/hole / e Å ⁻³	0.37/-0.23

12.References

- M. Emilie, V. Anna Chiara, M. Michele, M. Andrea, Z. Paolo, B. Luca and F. Mariafrancesca, Catalytic highly enantioselective transfer hydrogenation of β-trifluoromethyl nitroalkenes. An easy and general entry to optically active β-trifluoromethyl amines, *Chem. Commun.*, 2015, **46**, 658-660.
- (a) I. V. Kutovaya, O. I. Shmatova, V. M. Tkachuk, N. V. Melnichenko, M. V. Vovk and V. G. Nenajdenko, Aza-Henry Reaction with CF3-Ketimines: An Efficient Approach to Trifluoromethylated β-Nitroamines, 1,2-Diamines, α-Aminooximes, and Imidazolidinones, *Eur. J. Org. Chem.*, 2015, 2015, 6749-6761. (b) M. Du, L. Yu, T. Du, Z. Li, Y. Luo, X. Meng, Z. Tian, C. Zheng, W. Cao and G. Zhao, N-Protecting group tuning of the enantioselectivity in Strecker reactions of trifluoromethyl ketimines to synthesize quaternary α-trifluoromethyl amino nitriles by ion pair catalysis, *Chem. Commun.*, 2020, 56, 1581-1584.
- 3. (a) S. del Pozo, S. Vera, M. Oiarbide and C. Palomo, Catalytic Asymmetric Synthesis of Quaternary Barbituric Acids, J. Am. Chem. Soc., 2017, 139, 15308-15311. (b) M.-X. Zhao, H.-L. Bi, R.-H. Jiang, X.-W. Xu and M. Shi, Cinchona Alkaloid Squaramide/AgOAc Cooperatively Catalyzed Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction of Isocyanoacetates and Cyclic Trifluoromethyl Ketimines, Org. Lett., 2014, 16, 4566-4569. (c) W. Yang and D.-M. Du, Highly Enantioselective Michael Addition of Nitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen Bonding Organocatalysts, Org. Lett., 2010, 12, 5450-5453. (d) V. Kumar and S. Mukherjee, Synergistic Lewis base and anion-binding catalysis for the enantioselective vinylogous addition of deconjugated butenolides to allenoates, Chem. Comm., 2013, 49, 11203-11205. (e) Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal, Squaramide-catalyzed enantioselective Friedel-Crafts reaction of indoles with imines, Chem. Comm., 2010, 46, 3004-3006. (f) P. S. Bhadury, Y. Zhang, S. Zhang, B. Song, S. Yang, D. Hu, Z. Chen, W. Xue and L. Jin, An effective route to fluorine containing asymmetric α-aminophosphonates using chiral Bronsted acid catalyst, Chirality, 2009, 21, 547-557. (g) M. Hatano, T. Ikeno, T. Matsumura, S. Torii and K. Ishihara, Chiral lithium salts of phosphoric acids as lewis acid-base conjugate catalysts for the enantioselective cyanosilylation of ketones, Adv. Synth. Catal., 2008, 350, 1776-1780.