Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

SUPPLEMENTARY INFORMATION

Manuscript submitted to: Organic & Biomolecular Chemistry

Article Type: Regular Article.

Corresponding Author: Prof. Dr. Rafael Gómez Ramírez Department of Organic and Inorganic Chemistry University of Alcalá UAH Campus. Faculty of Pharmacy 28871 Alcalá de Henares. Spain Tel: (+34) 91 8854679. E-mail: <u>rafael.gomez@uah.es</u>

Evaluation of pH-dependent amphiphilic carbosilane dendrons in micelle formation, drug loading and HIV-1 infection

Gabriel Mencia^{1,2,3}, Tania Lozano-Cruz^{1,2,3}, Mercedes Valiente⁴, Jose Luis Jimenez^{2,6,7}, Fco. Javier de la Mata^{1,2,3}, M^a Ángeles Muñoz-Fernández^{2,5,7}, Jesús Cano^{1,2,3}, Elizabeth Gillies⁸ and Rafael Gómez^{1,2,3,*}

¹ Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain.

- ² Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
- ³ Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain.
- ⁴ Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain.
- ⁵ Head of Immunology. Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon (HGUGM), Madrid 28007, Spain.
- ⁶ Laboratory Platform (Immunology). General Universitary Hospital Gregorio Marañón (HGUGM), Madrid 28007, Spain.
- ⁷ Health Research Institute Gregorio Marañon (HGUGM), Spanish HIV HGM BioBank, Madrid 28007, Spain.
- ⁸ Department of Chemistry, Department of Chemical and Biochemical Engineering, and the School of Biomedical Engineering at the University of Western Ontario, London, Canada, N6G1Z1
- * Corresponding author: rafael.gomez@uah.es; Tel: (+34) 91 8854685

Rafael Gómez Ramírez: orcid.org/0000-0001-6448-2414 M^a Angeles Muñoz-Fernández: orcid.org/0000-0002-0813-4500 Elizabeth Gillies: orcid.org/0000-0002-3983-2248 Gabriel Mencia: orcid.org/0000-0001-9555-7503

Table of contents

Figure S1. ¹ H-NMR spectrum of dendron PalG ₁ (S-CO ₂ H) ₂ (1) in CDCl ₃	4
Figure S2. ¹³ C-NMR spectrum of dendron $PalG_1(S-CO_2H)_2$ (1) in CDCl ₃ .	4
Figure S3. Molecular ion spectrum of dendron $PalG_1(S-CO_2H)_2$ (1)	5
Figure S4. ¹ H-NMR spectrum of dendron PalG ₂ (S-CO ₂ H) ₄ (2) in CDCl ₃ .	5
Figure S5. ¹³ C-NMR spectrum of dendron PalG ₂ (S-CO ₂ H) ₄ (2) in CDCl ₃	6
Figure S6. Molecular ion spectrum of dendron $PalG_2(S-CO_2H)_4$ (2)	6
Figure S7. ¹ H-NMR spectrum of dendron $PalG_3(S-CO_2H)_8$ (3) in $CDCl_3$.	7
Figure S8. ¹³ C-NMR spectrum of dendron PalG ₃ (S-CO ₂ H) ₈ (3) in CDCl ₃ .	7
Figure S9. Molecular ion spectrum of dendron PalG ₃ (S-CO ₂ H) ₈ (3)	8
Figure S10. ¹ H-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4) in CD_3OD .	8
Figure S11. ¹³ C-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4) in CD_3OD	9
Figure S12. Molecular ion spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4).	9
Figure S13. ¹ H-NMR spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5) in CD_3OD .	10
Figure S14. ¹³ C-NMR spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5) in CD_3OD	10
Figure S15. Molecular ion spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5)	11
Figure S16. ¹ H-NMR spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (6) in CD_3OD .	11
Figure S17. ¹³ C-NMR spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (6) in CD_3OD	12
Figure S18. Molecular ion spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (6)	12
Figure S19. ¹ H-NMR spectrum of dendron $PalG_1(S-CO_2Na)_2$ (7) in D_2O	13
Figure S20. ¹³ C-NMR spectrum of dendron PalG ₁ (S-CO ₂ Na) ₂ (7) in D ₂ O	13
Figure S21. Molecular ion spectrum of dendron $PalG_1(S-CO_2Na)_2$ (7)	14
Figure S22. ¹ H-NMR spectrum of dendron $PalG_2(S-CO_2Na)_4$ (8) in D_2O	14
Figure S23. ¹³ C-NMR spectrum of dendron PalG ₂ (S-CO ₂ Na) ₄ (8) in D ₂ O	15
Figure S24. Molecular ion spectrum of dendron $PalG_2(S-CO_2Na)_4$ (8)	15
Figure S25. ¹ H-NMR spectrum of dendron $PalG_3$ (S-CO ₂ Na) ₈ (8) in D ₂ O	16
Figure S26. ¹³ C-NMR spectrum of dendron $PalG_3(S-CO_2Na)_8$ (8) in D_2O	16
Figure S27. Molecular ion spectrum of dendron $PalG_3(S-CO_2Na)_8$ (8)	17
Figure S28. ¹ H-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (10) in D_2O	17
Figure S29. ¹³ C-NMR spectrum of dendron $PalG_1(S-(CO_2Na)_2)_2$ (10) in D_2O	18
Figure S30. Mass spectrum of dendron PalG ₁ (S-(CO ₂ Na) ₂) ₂ (10)	18
Figure S31. ¹ H-NMR spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (11) in D_2O	19
Figure S32. ¹³ C-NMR spectrum of dendron $PalG_2(S-(CO_2Na)_2)_4$ (11) in D_2O	19
Figure S33. Mass spectrum of dendron PalG ₂ (S-(CO ₂ Na) ₂) ₄ (11)	20
Figure S34. ¹ H-NMR spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (12) in D_2O	20
Figure S35. ¹³ C-NMR spectrum of dendron $PalG_3(S-(CO_2Na)_2)_8$ (12) in D_2O	21

Figure S36. Mass spectrum of dendron $PalG_3(S-(CO_2Na)_2)_8$ (12)21
Figure S37. Size distribution of $PalG_n(S-CO_2Na)_m$ (7-8) measured by DLS22
Figure S38. Size distribution of $PalG_n(S-(CO_2Na)_2)_m$ (10-11) measured by DLS22
Figure S39. Size distribution of PalG ₁ (S-CO ₂ Na) ₂ (7) with and without ibuprofen sodium salt measured by DLS23
Figure S40. 1/F-F0 vs 1/([Drug]+[Dendron]-CMC) graphic of ibuprofen sodium salt encapsulated by 7 23
Figure S41. 1/(F-F ₀) vs 1/([Drug]+[Dendron]-CMC) graphic of procaine hydrochloride encapsulated by 7 24
Figure S42. 1/(F-F ₀) vs 1/([Drug]+[Dendron]-CMC) graphic of ibuprofen sodium salt encapsulated by 10 24
Figure S43. 1/(F-F ₀) vs 1/([Drug]+[Dendron]-CMC) graphic of procaine hydrochloride encapsulated by 10 25

Figure S2. ¹³C-NMR spectrum of dendron PalG₁(S-CO₂H)₂ (1) in CDCI₃.

Figure S4. ¹H-NMR spectrum of dendron PalG₂(S-CO₂H)₄ (2) in CDCl₃.

Figure S5. ¹³C-NMR spectrum of dendron PalG₂(S-CO₂H)₄ (2) in CDCI₃.

Figure S7. ¹H-NMR spectrum of dendron $PalG_3(S-CO_2H)_8$ (3) in $CDCI_3$.

Figure S8. 13 C-NMR spectrum of dendron PalG₃(S-CO₂H)₈ (3) in CDCI₃.

Figure S9. Molecular ion spectrum of dendron $PalG_3(S-CO_2H)_8$ (3).

Figure S10. ¹H-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4) in CD_3OD .

Figure S11. ¹³C-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4) in CD_3OD .

Figure S12. Molecular ion spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (4).

Figure S13. ¹H-NMR spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5) in CD_3OD .

Figure S14. ¹³C-NMR spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5) in CD_3OD .

Figure S15. Molecular ion spectrum of dendron $PalG_2(S-(CO_2H)_2)_4$ (5)

Figure S17. $^{13}\text{C-NMR}$ spectrum of dendron $\text{PalG}_3(\text{S-}(\text{CO}_2\text{H})_2)_8$ (6) in $\text{CD}_3\text{OD}.$

Figure S18. Molecular ion spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (6)

Figure S19. ¹H-NMR spectrum of dendron $PalG_1(S-CO_2Na)_2$ (7) in D_2O .

Figure S20. ¹³C-NMR spectrum of dendron $PalG_1(S-CO_2Na)_2$ (7) in D_2O .

Figure S21. Molecular ion spectrum of dendron $PalG_1(S-CO_2Na)_2$ (7).

Figure S22. ¹H-NMR spectrum of dendron $PalG_2(S-CO_2Na)_4$ (8) in D_2O .

Figure S23. ¹³C-NMR spectrum of dendron $PalG_2(S-CO_2Na)_4$ (8) in D_2O .

Figure S24. Molecular ion spectrum of dendron $PalG_2(S-CO_2Na)_4$ (8).

Figure S25. ¹H-NMR spectrum of dendron $PalG_3(S-CO_2Na)_8$ (8) in D_2O .

Figure S26. 13 C-NMR spectrum of dendron PalG₃(S-CO₂Na)₈ (8) in D₂O.

Figure S27. Molecular ion spectrum of dendron $PalG_3(S-CO_2Na)_8$ (8).

Figure S28. ¹H-NMR spectrum of dendron $PalG_1(S-(CO_2H)_2)_2$ (**10**) in D_2O .

Figure S30. Mass spectrum of dendron $PalG_1(S-(CO_2Na)_2)_2$ (10).

Figure S32. ¹³C-NMR spectrum of dendron $PalG_2(S-(CO_2Na)_2)_4$ (**11**) in D_2O .

Figure S33. Mass spectrum of dendron $PalG_2(S-(CO_2Na)_2)_4$ (11)

Figure S34. ¹H-NMR spectrum of dendron $PalG_3(S-(CO_2H)_2)_8$ (12) in D_2O .

Figure S35. ¹³C-NMR spectrum of dendron $PalG_3(S-(CO_2Na)_2)_8$ (12) in D_2O .

Figure S36. Mass spectrum of dendron $PalG_3(S-(CO_2Na)_2)_8$ (12)

Figure S37. Size distribution of $\mathsf{PalG}_n(S\text{-}\mathsf{CO}_2Na)_m$ (7-8) measured by DLS.

Figure S38. Size distribution of $PalG_n(S-(CO_2Na)_2)_m$ (10-11) measured by DLS.

Figure S39. Size distribution of $PalG_1(S-CO_2Na)_2$ (7) with and without ibuprofen sodium salt measured by DLS.

Figure S40. 1/F-F0 vs 1/([Drug]+[Dendron]-CMC) graphic of ibuprofen sodium salt encapsulated by **7**.

Figure S41. $1/(F-F_0)$ vs 1/([Drug]+[Dendron]-CMC) graphic of procaine hydrochloride encapsulated by **7**.

Figure S42. $1/(F-F_0)$ vs 1/([Drug]+[Dendron]-CMC) graphic of ibuprofen sodium salt encapsulated by **10**.

Figure S43. $1/(F-F_0)$ vs 1/([Drug]+[Dendron]-CMC) graphic of procaine hydrochloride encapsulated by **10**.