A transition-metal-free cascade benzannulation for the synthesis of 2-hydroxybenzophenones

Xue-Wen He, ^a Wei Zhou, ^a Min Zhang, ^a Min-Yi Tian, ^a Hui-Juan Wang, ^{*a} You-Ping Tian^b and Xiong-Li Liu*^a

^a National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, 550025, China.

^b College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P. R. China.

E-mail: xlliu1@gzu.edu.cn and xuchwhj@163.com

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. Typical experimental procedures for synthesis of compounds 3	S2
3. Characterization data of compounds 3	S2
4. Scheme S1: large-scale synthesis of product 3w	S10
5. Scheme S2: control experiments	S10
6. Figure S1: intermediates III detected by ESI-MS analysis in reaction solution	S11
7. X-Ray crystal data for compounds 3a and 3f	S12
8. The copies of ¹ H NMR and ¹³ C NMR spectra for compounds 3	S14

1. General experimental information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refered to pure isolated substances. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus. Reagents were purchased from commercial sources and were used as received unless mentioned otherwise.

2. Typical experimental procedures for synthesis of compounds 3

In a sealed tube containing air with a magnetic stirring bar, to the mixture of γ -nitroaldehyde **1** (0.20 mmol) and chromone-3-carboxaldehyde **2** (0.30 mmol) in 1.0 mL of DCM was added DBU (1.2 eq). The reaction mixture was stirred at rt for 2 d in the air. The reaction mixture was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **3**, using hexane/EtOAc (8/1, v/v) as the eluent.

3. Characterization data of compounds 3

3a: Light yellow solid, m.p. 99.2-100.7 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ: 6.86-6.90 (m, 1H), 7.04-7.06 (m, 1H), 7.29-7.31 (m, 2H), 7.36-7.43 (m, 3H), 7.48-7.55 (m, 3H), 7.84-7.87 (m, 1H), 8.09 (s, 1H), 11.67 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 117.5, 117.9, 118.2, 123.8, 126.8, 127.9, 128.0, 131.2, 131.4, 131.9, 135.2, 136.2, 136.7, 138.4, 148.0, 162.4, 197.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₂NO₄ [M-H]⁻: 318.0766; Found: 318.0763.

3b: Light yellow solid, m.p. 181.6-183.2 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.22 (s, 3H), 6.95 (d, J = 8.4 Hz, 1H), 7.28-7.32 (m, 4H), 7.39-7.42 (m, 3H), 7.54 (d, J = 8.0 Hz, 1H), 7.83-7.85 (m, 1H), 8.08 (s, 1H), 11.45 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.5, 117.2, 117.6, 123.7, 126.8, 127.4, 127.9, 131.2, 131.3, 131.4, 135.3, 136.9, 137.3, 138.3, 148.0, 160.3, 197.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₄NO₄ [M-H]⁻: 332.0923; Found: 332.0927.

3c: Light yellow solid, m.p. 118.7-119.2 °C; yield 53%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.14 (s, 3H), 1.15 (s, 3H), 2.76-2.83 (m, 1H), 6.98 (d, J = 8.8 Hz, 1H), 7.31-7.34 (m, 3H), 7.38-7.42 (m, 4H), 7.55 (d, J = 8.0 Hz, 1H), 8.11 (s, 1H), 11.49 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 32.2, 117.1, 117.7, 124.0, 126.8, 127.9, 128.0, 129.0, 131.2, 131.4, 134.7, 135.3, 136.8, 138.4, 138.6, 148.0, 160.5, 197.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈NO₄ [M-H]⁻: 360.1230; Found: 360.1235.

3d: Light yellow solid, m.p. 124.9-126.3 °C; yield 52%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.01-7.04 (m, 1H), 7.18-7.31 (m, 4H), 7.39-7.42 (m, 3H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.83-7.86 (m, 1H), 8.09 (s, 1H), 11.39 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 116.5 (d, *J_{CF}* = 24.1 Hz), 116.9 (d, *J_{CF}* = 7.2 Hz), 119.3, 119.4, 123.7, 123.8 (d, *J_{CF}* = 23.4 Hz), 126.8, 127.9, 131.2, 131.3, 135.1, 136.1, 138.8, 148.2, 153.4, 153.7 (d, *J_{CF}* = 239.3 Hz), 158.6, 196.5; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₁FNO₄ [M-H]⁻: 336.0674; Found: 336.0675.

3e: Light yellow solid, m.p. 210.0-211.5 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ: 7.01 (d, J = 8.8 Hz, 1H), 7.30-7.32 (m, 2H), 7.40-7.48 (m, 5H), 7.56 (d, J = 8.0 Hz, 1H), 7.82-7.85 (m, 1H), 8.09 (s, 1H), 11.55 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 118.1, 119.6, 123.0, 123.7, 126.8, 128.0, 128.1, 130.6, 131.2, 131.4, 135.1, 136.0, 136.1, 138.8, 148.3, 160.8, 196.5; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₁ClNO₄ [M-H]⁻: 352.0378; Found: 352.0382.

3f: Light yellow solid, m.p. 163.6-165.1 °C; yield 50%; ¹H NMR (CDCl₃, 400 MHz) δ: 6.97 (d, *J* = 8.8 Hz, 1H), 7.30-7.33 (m, 2H), 7.40-7.43 (m, 3H), 7.56-7.59 (m, 2H), 7.62 (d, *J* = 2.4 Hz, 1H), 7.82-7.85 (m, 1H), 8.09 (s, 1H), 11.56 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 109.8, 118.8, 119.9, 123.7, 126.8, 128.0, 128.1, 131.2, 131.4, 133.6, 135.1, 136.0, 138.8, 148.3, 161.3, 196.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₁BrNO₄ [M-H]⁻: 395.9874; Found: 395.9878.

3g: Light yellow solid, m.p. 173.6-175.1 °C; yield 50%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.35 (s, 3H), 6.94 (s, 1H), 7.29-7.32 (m, 2H), 7.38-7.42 (m, 3H), 7.46 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.81-7.83 (m, 1H), 8.07 (s, 1H), 11.55 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.0, 116.4, 119.9, 123.6, 123.7, 126.8, 127.9, 128.0, 131.0, 131.2, 131.3, 135.2, 136.3, 138.6, 145.8, 148.2, 160.8, 196.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₃ClNO₄ [M-H]⁻: 366.0534; Found: 366.0530.

3h: Light yellow solid, m.p. 167.8-169.3 °C; yield 49%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.29-7.32 (m, 2H), 7.40-7.42 (m, 3H), 7.48 (d, J = 2.4 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H), 7.82-7.85 (m, 1H), 8.09 (s, 1H), 12.09 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 112.4, 118.5, 123.3, 123.8, 126.7, 128.0, 128.1, 130.0, 131.3, 131.5, 134.9, 135.4, 138.6, 139.2, 148.3, 157.4, 196.2; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀BrClNO₄[M-H]⁻: 429.9484; Found: 429.9486.

3i: Light yellow solid, m.p. 201.2-202.7 °C; yield 47%; ¹H NMR (CDCl₃, 400 MHz) δ: 7.30-7.32 (m, 2H), 7.40-7.42 (m, 3H), 7.57-7.61 (m, 2H), 7.82-7.85 (m, 1H), 7.89 (d, *J* = 2.4 Hz, 1H), 8.09 (s, 1H), 12.11 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 109.8, 112.8, 119.2, 123.9, 126.8, 128.0, 128.2, 131.3, 131.5, 132.9, 134.9, 135.4, 139.3, 141.1, 148.3, 157.8, 196.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀Br₂NO₄ [M-H]⁻: 473.8977; Found: 473.8981.

3j: Light yellow solid, m.p. 116.6-118.1 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ: 3.80 (s, 3H), 6.86-6.90 (m, 1H), 6.91-6.95 (m, 1H), 7.04-7.06 (m, 1H), 7.23-7.26 (m, 2H), 7.48-7.54 (m, 3H), 7.82-7.85 (m, 1H), 8.04 (s, 1H), 11.67 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 54.4, 113.5, 117.6, 117.8, 118.2, 123.8, 127.2, 128.1, 131.1, 131.3, 131.9, 136.1, 136.2, 138.0, 148.1, 159.3, 162.3, 197.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₄NO₅ [M-H]⁻: 348.0874; Found: 348.0871.

3k: Light yellow solid, m.p. 131.3-132.6 °C; yield 51%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.13 (s, 3H), 1.15 (s, 3H), 2.75-2.82 (m, 1H), 3.79 (s, 3H), 6.92 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 1H), 7.24-7.27 (m, 2H), 7.33 (d, J = 2.4 Hz, 1H), 7.37-7.40 (m, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.82-7.85 (m, 1H), 8.06 (d, J = 1.6 Hz, 1H), 11.49 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 32.2, 54.4, 113.5, 117.2, 117.6, 124.1, 127.3, 128.2, 129.0, 131.0, 131.3, 134.7, 136.3, 137.9, 138.5, 148.0, 159.3, 160.5, 197.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀NO₅ [M-H]⁻: 390.1343; Found: 390.1346.

31: Light yellow solid, m.p. 153.3-154.8 °C; yield 50%; ¹H NMR (CDCl₃, 400 MHz) δ: 3.80 (s,

3H), 6.93 (d, J = 8.8 Hz, 2H), 7.01-7.05 (m, 1H), 7.20-7.28 (m, 4H), 7.54 (d, J = 8.0 Hz, 1H), 7.81-7.84 (m, 1H), 8.05 (s, 1H), 11.40 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 54.4, 113.5, 116.5 (d, $J_{CF} = 24.1$ Hz), 117.0 (d, $J_{CF} = 6.4$ Hz), 119.2 (d, $J_{CF} = 8.1$ Hz), 123.8 (d, $J_{CF} = 24.2$ Hz), 127.1, 128.2, 131.1, 131.2, 135.6, 138.4, 148.2, 153.7 (d, $J_{CF} = 238.3$ Hz), 158.5, 159.4, 196.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₃FNO₅ [M-H]⁻: 366.0780; Found: 366.0784.

3m: Light yellow solid, m.p. 177.5-179.2 °C; yield 49%; ¹H NMR (CDCl₃, 400 MHz) δ: 3.80 (s, 3H), 6.92-6.97 (m, 3H), 7.25 (d, J = 8.8 Hz, 2H), 7.54-7.62 (m, 3H), 7.79-7.82 (m, 1H), 8.04 (s, 1H), 11.56 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 54.4, 109.7, 113.5, 118.8, 119.9, 123.8, 127.1, 128.2, 131.2, 133.6, 135.4, 138.4, 138.7, 159.4, 161.2, 196.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₃BrNO₅ [M-H]⁻: 425.9981; Found: 425.9977.

3n: Light yellow solid, m.p. 173.6-175.1 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.35 (s, 3H), 3.79 (s, 3H), 6.91-6.94 (m, 3H), 7.24 (d, J = 8.4 Hz, 2H), 7.46 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.78-7.81 (m, 1H), 8.03 (s, 1H), 11.56 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.9, 54.4, 113.5, 116.5, 119.8, 123.6, 123.7, 127.2, 128.2, 131.0, 131.1, 131.2, 135.7, 138.2, 145.7, 148.2, 159.3, 160.7, 196.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₁₅ClNO₅ [M-H]⁻: 396.0640; Found: 396.0644.

30: Light yellow solid, m.p. 123.1-124.6 °C; yield 47%; ¹H NMR (CDCl₃, 400 MHz) δ : 6.86-6.90 (m, 1H), 7.04-7.12 (m, 3H), 7.26-7.30 (m, 2H), 7.49-7.53 (m, 3H), 7.85-7.87 (m, 1H), 8.09 (s, 1H), 11.65 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 115.1 (d, J_{CF} = 22.3 Hz), 117.5, 117.9, 118.2, 123.9, 128.7 (d, J_{CF} = 8.1 Hz), 131.3 (d, J_{CF} = 26.0 Hz), 136.2, 136.9, 137.3, 148.0, 162.4, 162.6 (d, $J_{CF} = 248.3$ Hz), 197.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₁FNO₄ [M-H]⁻: 336.0675; Found: 336.0673.

3p: Light yellow solid, m.p. 203.4-204.9 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.22 (s, 3H), 6.95 (d, J = 8.4 Hz, 1H), 7.07-7.12 (m, 2H), 7.26-7.33 (m, 4H), 7.51 (d, J = 7.6 Hz, 1H), 7.83-7.85 (m, 1H), 8.08 (s, 1H), 11.47 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.5, 115.1 (d, $J_{CF} = 21.1$ Hz), 117.2, 117.7, 123.8, 128.7 (d, $J_{CF} = 8.3$ Hz), 131.1, 131.4, 137.1, 137.2, 137.4, 148.0, 160.4, 161.6 (d, $J_{CF} = 248.1$ Hz), 197.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₃FNO₄ [M-H]⁻: 350.0832; Found: 350.0827.

3q: Light yellow solid, m.p. 166.4-167.9 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.13 (s, 3H), 1.15 (s, 3H), 2.75-2.82 (m, 1H), 6.98 (d, J = 21.0 Hz, 1H), 7.07-7.11 (m, 2H), 7.28-7.32 (m, 3H), 7.38-7.41 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.85-7.87 (m, 1H), 8.11 (s, 1H), 11.46 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 32.2, 115.0 (d, $J_{CF} = 22.1$ Hz), 117.1, 117.7, 124.1, 128.7, 128.9 (d, $J_{CF} = 21.2$ Hz), 131.1, 131.2, 131.3, 131.5, 134.8, 137.0, 137.3, 138.6, 148.0, 160.5, 161.7 (d, $J_{CF} = 248.3$ Hz), 197.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₇FNO₄ [M-H]⁻: 378.1144; Found: 378.1142.

3r: Light yellow solid, m.p. 152.2-153.7 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.02-7.05 (m, 1H), 7.08-7.13 (m, 2H), 7.17-7.20 (m, 1H), 7.23-7.30 (m, 3H), 7.53 (d, J = 7.6 Hz, 1H), 7.84-7.86 (m, 1H), 8.10 (s, 1H), 11.38 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 115.1 (d, $J_{CF} =$ 21.2 Hz), 116.4 (d, $J_{CF} = 23.3$ Hz), 116.9 (d, $J_{CF} = 7.2$ Hz), 119.4 (d, $J_{CF} = 7.0$ Hz), 124.0 (d, $J_{CF} =$ 23.3 Hz), 128.7, 131.3, 136.3, 137.7, 148.2, 153.7 (d, $J_{CF} = 249.4$ Hz), 158.6, 162.2 (d, $J_{CF} =$ 238.4 Hz), 196.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀F₂NO₄ [M-H]⁻: 354.0579; Found: 354.0582.

3s: Light yellow solid, m.p. 223.5-225.2 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.01-7.03 (m, 1H), 7.08-7.13 (m, 2H), 7.27-7.31 (m, 2H), 7.44-7.46 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.82-7.85 (m, 1H), 8.10 (s, 1H), 11.53 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 115.1 (d, $J_{CF} =$ 21.3 Hz), 118.1, 119.6, 123.0, 123.8, 128.7 (d, $J_{CF} = 9.1$ Hz), 130.6, 131.3 (d, $J_{CF} = 6.2$ Hz), 136.1, 136.2, 137.8, 148.2, 160.8, 162.2 (d, $J_{CF} = 249.3$ Hz), 196.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀ClFNO₄ [M-H]⁻: 370.0285; Found: 370.0283.

3t: Light yellow solid, m.p. 245.3-246.8 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ : 6.97 (d, J = 8.4 Hz, 1H), 7.09-7.13 (m, 2H), 7.28-7.32 (m, 2H), 7.54-7.61 (m, 3H), 7.82-7.85 (m, 1H), 8.10 (s, 1H), 11.55 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 109.8, 115.1 (d, $J_{CF} = 22.3$ Hz), 118.7, 120.0, 123.8, 128.7 (d, $J_{CF} = 8.3$ Hz), 131.0, 131.1, 131.3 (d, $J_{CF} = 6.3$ Hz), 133.6, 136.2, 137.8, 138.9, 148.2, 4161.3, 162.2 (d, $J_{CF} = 249.3$ Hz), 196.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀BrFNO₄ [M-H]⁻: 413.9780; Found: 413.9779.

3u: Light yellow solid, m.p. 145.1-146.7 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.35 (s, 3H), 6.94 (s, 1H), 7.07-7.12 (m, 2H), 7.27-7.30 (m, 2H), 7.44 (s, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.81-7.83 (m, 1H), 8.08 (s, 1H), 11.53 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.0, 115.1 (d, $J_{CF} = 22.3$ Hz), 116.4, 119.9, 123.6, 123.7, 128.7 (d, $J_{CF} = 9.1$ Hz), 131.0, 131.2, 131.3, 136.5, 137.5, 145.9, 148.2, 161.8 (d, $J_{CF} = 248.1$ Hz), 195.9; HRMS (ESI-TOF) m/z: Calcd. for $C_{20}H_{12}CIFNO_4$ [M-H]⁻: 384.0441; Found: 384.0442.

3v: Light yellow solid, m.p. 215.4-216.9 °C; yield 51%; ¹H NMR (CDCl₃, 400 MHz) δ : 2.22 (s, 3H), 6.95 (d, J = 8.4 Hz, 1H), 7.17-7.19 (m, 2H), 7.25 (s, 1H), 7.31-7.33 (m, 1H), 7.49-7.55 (m, 3H), 7.83-7.86 (m, 1H), 8.10 (s, 1H), 11.46 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.5, 117.1, 117.7, 122.5, 123.9, 127.5, 128.4, 131.0, 131.1, 131.3, 131.5, 134.3, 137.1, 137.3, 137.4, 147.8, 160.4, 197.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₃BrNO₄ [M-H]⁻: 410.0030; Found: 410.0034.

3w: Light yellow solid, m.p. 149.2-150.7 °C; yield 56%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.13 (s, 3H), 1.15 (s, 3H), 2.75-2.82 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.18-7.20 (m, 2H), 7.31 (d, J = 2.4 Hz, 1H), 7.38-7.41 (m, 1H), 7.50-7.55 (m, 3H), 7.86-7.88 (m, 1H), 8.13 (s, 1H), 11.46 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 32.2, 117.1, 117.7, 122.5, 124.2, 128.4, 128.9, 131.0, 131.1, 131.6, 134.3, 134.8, 137.2, 138.6, 147.7, 160.6, 197.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₇BrNO₄[M-H]⁻: 438.0342; Found: 438.0339.

3x: Light yellow solid, m.p. 213.7-215.2 °C; yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ: 7.01 (d, *J* = 9.6 Hz, 1H), 7.17-7.19 (m, 2H), 7.44-7.47 (m, 2H), 7.52-7.55 (m, 3H), 7.83-7.85 (m, 1H), 8.11 (s, 1H), 11.52 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 118.0, 119.6, 122.6, 123.0, 123.9, 128.4, 130.6, 131.2, 131.4, 134.1, 136.2, 136.4, 137.7, 148.0, 160.9, 196.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀BrClNO₄ [M-H]⁻: 429.9484; Found: 429.9489.

3y: Light yellow solid, m.p. 224.9-226.4 °C; yield 50%; ¹H NMR (CDCl₃, 400 MHz) δ: 6.96-6.98 (m, 1H), 7.17-7.19 (m, 2H), 7.52-7.60 (m, 5H), 7.83-7.85 (m, 1H), 8.11 (s, 1H), 11.54 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 109.8, 118.7, 120.0, 122.6, 123.9, 128.4, 131.2, 131.4, 133.6, 134.1, 136.4, 137.7, 138.9, 148.0, 161.3, 196.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₁₀Br₂NO₄ [M-H]-: 473.8977; Found: 473.8982.

3z: Light yellow solid, m.p. 149.6-151.1 °C; yield 52%; ¹H NMR (CDCl₃, 400 MHz) δ: 2.36 (s, 3H), 6.95 (s, 1H), 7.17-7.19 (m, 2H), 7.44 (s, 1H), 7.51-7.56 (m, 3H), 7.82-7.84 (m, 1H), 8.10 (s, 1H), 11.53 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 20.0, 116.4, 119.9, 122.5, 123.7, 123.8, 128.4, 131.0, 131.2, 131.3, 134.1, 136.7, 137.5, 145.9, 147.9, 160.8, 195.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₂BrClNO₄ [M-H]⁻: 443.9641; Found: 443.9637.

4. Scheme S1: large-scale synthesis of product 3w

In a sealed tube containing air with a magnetic stirring bar, to the mixture of γ -nitroaldehyde **1** (2.0 mmol) and chromone-3-carboxaldehyde **2** (3.0 mmol) in 10.0 mL of DCM was added DBU (1.2 eq). The reaction mixture was stirred at rt for 2 d in the air. The reaction mixture was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **3w**, using hexane/EtOAc (8/1, v/v) as the eluent (0.46 g, 52% yield).

5. Scheme S2: control experiments

In a sealed tube containing air with a magnetic stirring bar, to the mixture of chromone-3carboxaldehyde 2 (0.2 mmol) in 1.0 mL of DCM was added DBU (1.2 eq). The reaction mixture was stirred at rt for 10 h in the air. The mixture was directly detected by HRMS analysis (HRMS

(ESI) exact mass calcd for $C_{12}H_{13}O_3^-$ requires m/z 205.0859, found m/z 205.0860).

In a sealed tube containing air with a magnetic stirring bar, to the mixture of chromone-3carboxaldehyde **2** (0.20 mmol) and the β -keto aldehyde **4c'** (0.15 mmol) in 1.0 mL of DCM was added DBU (1.2 eq). The reaction mixture was stirred at rt for 2 d in the air. However, the reaction did not provide the desired product **3c**.

program: a solution of substrate 2 and DBU was stirred at rt for 4 h

6. Figure S1: intermediate III detected by ESI-MS analysis in reaction solution.

program: a solution of substrate 2, DBU and γ -nitroaldehyde 1 was stirred at rt for 4 h

7. X-Ray crystal data for compounds 3a and 3f

Table S1 Crystal data and structure refinement for 3a

Identification code	3a
Empirical formula	$C_{19}H_{13}NO_4$
Formula weight	319.30
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å, b/Å, c/Å	4.2074(4), 12.9179(9), 27.180(2)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 94.001(7), 90.
Volume/Å ³	1473.7(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.439
µ/mm ⁻¹	0.843
F(000)	664.0
Crystal size/mm ³	$0.14\times0.12\times0.11$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	6.52 to 146.668
Index ranges	-2 < h < 5, -15 < k < 14, -33 < 1 < 33
Reflections collected	6110
Independent reflections	2894 [$R_{int} = 0.0505$, $R_{sigma} = 0.0559$]
Data/restraints/parameters	2894/0/218
Goodness-of-fit on F ²	1.133
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0771$, $wR_2 = 0.2231$

Final R indexes [all data]

Largest diff. peak/hole / e Å⁻³ 0.35/-0.44

Crystal data for **3a**: **Crystal Data** for C₁₉H₁₃NO₄ (M =319.30 g/mol): monoclinic, space group P2₁/c (no. 14), a = 4.2074(4) Å, b = 12.9179(9) Å, c = 27.180(2) Å, $\beta = 94.001(7)^{\circ}$, V = 1473.7(2) Å³, Z = 4, T = 100.01(10) K, μ (Cu K α) = 0.843 mm⁻¹, Dcalc = 1.439 g/cm³, 6110 reflections measured ($6.52^{\circ} \le 2\Theta \le 146.668^{\circ}$), 2894 unique ($R_{int} = 0.0505$, $R_{sigma} = 0.0559$) which were used in all calculations. The final R_1 was 0.0771 (I > 2 σ (I)) and wR_2 was 0.2291 (all data).

 $R_1 = 0.0845, wR_2 = 0.2291$

Table S2 Crystal data and structure refinement for 3f

Identification code	3f
Empirical formula	C ₁₉ H ₁₂ BrNO ₄
Formula weight	398.21
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å, b/Å, c/Å	12.5309(7), 7.1686(4), 17.8685(10)
α /°, β /°, γ /°,	90, 94.845(5), 90.
Volume/Å ³	1599.37(16)
Ζ	4
$\rho_{calc}g/cm^3$	1.654
μ/mm^{-1}	2.595
F(000)	800.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
20 range for data collection/°	4.576 to 50
Index ranges	$-14 \le h \le 12, -7 \le k \le 8, -21 \le l \le 18$
Paflastiana callastad	6206

Reflections collected	6396
Independent reflections	2818 [$R_{int} = 0.0314$, $R_{sigma} = 0.0469$]
Data/restraints/parameters	2818/0/227
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0328, wR_2 = 0.0683$
Final R indexes [all data]	$R_1 = 0.0439, wR_2 = 0.0725$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.40

Crystal data for **3f**: Crystal Data for C₁₉H₁₂BrNO₄ (M=398.21 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.5309(7) Å, b = 7.1686(4) Å, c = 17.8685(10) Å, $\beta = 94.845(5)^{\circ}$, V = 1599.37(16) Å³, Z = 4, T = 100.00(10) K, μ (Mo K α) = 2.595 mm⁻¹, *Dcalc* = 1.654 g/cm³, 6396 reflections measured (4.576° $\leq 2\Theta \leq 50^{\circ}$), 2818 unique ($R_{int} = 0.0314$, $R_{sigma} = 0.0469$) which were used in all calculations. The final R_1 was 0.0328 (I > 2 σ (I)) and wR_2 was 0.0725 (all data)..

8. The copies of ¹H NMR and ¹³C NMR spectra for compounds 3 ¹H and ¹³C NMR of 3a

¹H and ¹³C NMR of 3b

¹H and ¹³C NMR of 3c

¹H and ¹³C NMR of 3d

¹H and ¹³C NMR of 3e

¹H and ¹³C NMR of 3f

¹H and ¹³C NMR of 3g

¹H and ¹³C NMR of 3i

¹H and ¹³C NMR of 3j

¹H and ¹³C NMR of 3k

¹H and ¹³C NMR of 3l

¹H and ¹³C NMR of 3m

¹H and ¹³C NMR of 3n

¹H and ¹³C NMR of 30

¹H and ¹³C NMR of 3p

¹H and ¹³C NMR of 3q

¹H and ¹³C NMR of 3r

¹H and ¹³C NMR of 3s

¹H and ¹³C NMR of 3t

¹H and ¹³C NMR of 3u

¹H and ¹³C NMR of 3v

¹H and ¹³C NMR of 3w

¹H and ¹³C NMR of 3x

¹H and ¹³C NMR of 3y

S39

¹H and ¹³C NMR of 3z

