Supplementary Data

Experimental

General

UV-Vis absorption and CD spectra were measured with a Hitachi U-3500 spectrophotometer and a Jasco J-720W spectropolarimeter, respectively. ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were recorded on a JEOL ECA-600 (600, 151, 564, and 243 MHz) spectrometer; tetramethylsilane (0.00 ppm) was used as an internal reference for ¹H and ¹³C, and hexafluorobenzene (–164.90 ppm) and 85wt% deuterium phosphate in deuterium oxide (0.00 ppm) were used as external references for ¹⁹F and ³¹P, respectively. High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF II spectrometer with electrospray ionization (ESI) in acetonitrile; ESI-L Low Concentration Tuning Mix (Agilent Technologies) was used as an internal reference. Flash column chromatography (FCC) was performed with silica gel (Wakogel C300). RP-HPLC was performed on a packed octadecylated column (Cosmosil 5C₁₈AR-II, Nacalai Tesque) with a Shimadzu LC-10ADvp pump, SPD-M10Avp photodiode-array detector, and SCL-10Avp system controller.

Methyl 13¹-deoxopyropheophorbide-a (**3**) was prepared according to reported procedures [s1]. All the reagents and solvents for preparation were obtained from commercial suppliers and used as received. For optical spectroscopy, dichloromethane was purchased from Nacalai Tesque as reagents prepared specially for HPLC.

S1

Synthesis of methyl 13¹-deoxo-22-methyl-pyropheophorbide-a

hexafluorophosphate (H₂-1)

To a dry dichloromethane solution (10 mL) of methyl 13¹deoxopyropheophorbide-a (3, 50.8 mg, 95.0 µmol) was added methyl fluorosulfonate (1 mL, 13 mmol) and stirred at room temperature under nitrogen for 2 days. After evaporation, the residue was purified with FCC to recover the starting material (3, 10.1 mg, 18.9 μ mol, 20% recovery) as the first fraction (CH₂Cl₂: Et₂O = 100 : 5 as eluent) and give the *N*-methylated product as the second fraction (CH_2Cl_2 : MeOH = 100 : 5). The product was dissolved in a small amount of dichloromethane and washed with an aqueous 2% sodium hexafluorophosphate solution (three times). The organic phase was diluted with an excess amount of hexane and the resulting precipitates were filtered and dried in vacuo to afford H₂-1 (44.5 mg, 64.1 µmol) in 67% isolated yield and 84% conversion yield based on consumed 3. The product was a 9:11 diastereomeric mixture from its ¹H NMR spectrum (Fig. S1). The following ¹H NMR data exhibit minor/major peaks. H₂-1: blue black solid; Vis (CH₂Cl₂) $\lambda_{max} = 629$ (relative intensity, 0.11), 565 (0.06), 429 (0.93), 408 nm (1.00); ¹H NMR (CDCl₃) $\delta = 10.10/10.06$ (1H, s, 10-H), 9.96/9.91 (1H, s, 5-H), 9.28/9.26 (1H, s, 20-H), 8.17/8.16 (1H, dd, J = 17, 11 Hz, 3¹-H), 6.40/6.38 (1H, d, J =11 Hz, 3²-H cis to 3-C-H), 6.38 (1H, d, J = 17 Hz, 3²-H trans to 3-C-H), 5.09-5.01/4.96-4.90 (2H, m, 13^{1} -CH₂), 4.86/4.73 (1H, q, J = 8 Hz, 18-H), 4.56/4.62 (1H, br-d, J = 10 Hz, 17-H), 4.13–4.01/4.29–4.23 (2H, m, 13-CH₂), 3.76 (2H, q, J = 8 Hz, 8-CH₂), 3.69 (3H, s, 17²-COOCH₃), 3.60/3.59 (3H, s, 12-CH₃), 3.59/3.56 (3H, s, 2-CH₃), 3.22/3.19 (3H, s, 7-CH₃), 2.88–2.80, 2.72–2.67, 2.44–2.39, 2.24– 2.18/2.97-2.91, 2.88-2.80, 2.54-2.49, 2.36-2.30 (each 1H, m, 17-CH2CH2), 1.75/2.06 $(3H, d, J = 8 Hz, 18-CH_3), 1.47/1.45 (3H, t, J = 8 Hz, 8^1-CH_3), -4.13/-4.23 (3H, s, 22-1)$

CH₃), -4.31, -4.49/-4.14, -4.38 (each 1H, s, NH×2); ¹⁹F NMR (CDCl₃) δ = -70.78 (d, J = 710 Hz, PF₆⁻); ³¹P NMR (CDCl₃) δ = -144.66 (sep, J = 712 Hz, PF₆⁻); HRMS (ESI) found: m/z = 549.3220 and 144.9649, calcd for C₃₅H₄₁N₄O₂: [M-PF₆]⁺, 549.3224 and PF₆⁻, 144.9647.

The epimeric mixture of H₂-1 was separated by RP-HPLC (Cosmosil 5C₁₈-AR-II, $10 \text{ mm}\phi \times 250 \text{ mm}$) with methanol : water : trifluoroacetic acid = 75 : 25 : 0.1 (1.0) mL/min), and the first and second fractions were treated with an aqueous 2% sodium hexafluorophosphate solution (vide supra) to give H_2 -1a and H_2 -1b, respectively. H_2 -**1a** [from the first fraction, (22*R*)-epimer]: blue black solid; Vis (CH₂Cl₂) $\lambda_{max} = 629$ (relative intensity, 0.11), 565 (0.06), 429 (0.93), 408 nm (1.00); ¹H NMR (CDCl₃) δ = 10.13 (1H, s, 10-H), 9.98 (1H, s, 5-H), 9.30 (1H, s, 20-H), 8.18 (1H, dd, J = 17, 11 Hz, 3^{1} -H), 6.43 (1H, d, J = 11 Hz, 3^{2} -H *cis* to 3-C–H), 6.41 (1H, d, J = 17 Hz, 3^{2} -H *trans* to 3-C-H), 5.09, 4.94 (each 1H, dd, J = 16, 6 Hz, 13^{1} -CH₂), 4.88 (1H, q, J = 8 Hz, 18-H), 4.57 (1H, br-d, J = 10 Hz, 17-H), 4.25, 4.15 (each 1H, dd, J = 16, 6 Hz, 13-CH₂), 3.80 (2H, q, J = 8 Hz, 8-CH₂), 3.71 (3H, s, 17²-COOCH₃), 3.62 (3H, s, 12-CH₃), 3.61 (3H, s, 2-CH₃), 3.25 (3H, s, 7-CH₃), 2.97–2.92, 2.87–2.82, 2.57–2.52, 2.35–2.30 (each 1H, m, $17-CH_2CH_2$, 1.75 (3H, d, J = 8 Hz, $18-CH_3$), 1.45 (3H, t, J = 8 Hz, 8^1-CH_3), -4.04 (3H, s, 22-CH₃), -4.55, -4.74 (each 1H, s, NH×2); 13 C NMR (CDCl₃) δ = 173.49, 172.56, 170.57, 149.18, 148.81, 148.56, 141.90, 138.53, 137.97, 132.67, 131.08, 130.52, 129.07, 128.01, 125.62, 116.97, 100.21, 100.00, 99.27, 98.95, 98.20, 97.53, 96.48, 52.30, 51.32, 32.31, 31.37, 19.93, 16.18, 15.34, 12.50, 12.20, 11.78, 11.64, 11.36; HRMS (ESI) found: m/z = 549.3222 and 144.9648, calcd for C₃₅H₄₁N₄O₂: [M–PF₆]⁺, 549.3224 and PF₆⁻, 144.9647. **H₂-1b** [from the second fraction, (22S)-epimer]: blue black solid; UV-Vis (CH₂Cl₂) $\lambda_{max} = 629$ (relative intensity, 0.11), 565 (0.06), 429 (0.93), 408 nm

(1.00); ¹H NMR (CDCl₃) δ = 10.03 (1H, s, 10-H), 9.89 (1H, s, 5-H), 9.21 (1H, s, 20-H), 8.11 (1H, dd, *J* = 17, 11 Hz, 3¹-H), 6.35 (1H, dd, *J* = 11 Hz, 3²-H *cis* to 3-C–H), 6.34 (1H, d, *J* = 17 Hz, 3²-H *trans* to 3-C–H), 4.98–4.80 (2H, m, 13¹-CH₂), 4.68 (1H, q, *J* = 7 Hz, 18-H), 4.58 (1H, br-d, *J* = 13 Hz, 17-H), 4.22–4.00 (2H, m, 13-CH₂), 3.79 (2H, q, *J* = 7 Hz, 8-CH₂), 3.61 (3H, s, 17²-COOCH₃), 3.53 (3H, s, 12-CH₃), 3.52 (3H, s, 2-CH₃), 3.16 (3H, s, 7-CH₃), 3.07–3.03, 2.80–2.74, 2.66–2.61, 2.35–2.30 (each 1H, m, 17-CH₂CH₂), 1.98 (3H, d, *J* = 7 Hz, 18-CH₃), 1.39 (3H, t, *J* = 7 Hz, 8¹-CH₃), -4.20 (3H, s, 22-CH₃), -4.43, -4.77 (each 1H, s, NH×2); ¹³C NMR (CDCl₃) δ = 173.71, 172.79, 170.76, 149.58, 149.07, 148.86, 148.76, 142.08, 138.88, 138.15, 132.81, 130.78, 129.23, 128.19, 117.37, 116.42, 100.43, 99.83, 99.51, 99.37, 98.78, 97.94, 96.67, 52.48, 51.50, 36.83, 32.70, 25.23, 20.11, 12.84, 12.68, 12.42, 11.96, 11.84, 11.57; HRMS (ESI) found: *m*/*z* = 549.3221 and 144.9648, calcd for C₃₅H₄₁N₄O₂: [M–PF₆]⁺, 549.3224 and PF₆⁻, 144.9647.

Synthesis of zinc methyl 13¹-deoxo-22-methyl-pyropheophorbide-*a* hexafluorophosphate (Zn-1)

RP-HPLC separated free base H₂-1a or H₂-1b (ca. 1 mg) was dissolved in dichloromethane (3 mL), to which was added a methanol solution (1 mL) saturated with zinc acetate dihydrate. The mixture was stirred at room temperature in the dark for 1 h. The reaction mixture was diluted with dichloromethane, washed with an aqueous solution saturated with sodium hydrogen carbonate, water, and an aqueous 2% sodium hexafluorophosphate solution (twice), and dried over sodium sulfate. After filtration, the solvent was evaporated to give the corresponding zinc complex, **Zn-1a** or **Zn-1b** as green solid. **Zn-1a**: Vis (CH₂Cl₂) λ_{max} 630 (relative intensity, 0.11), 437 (0.81), 416 nm (1.00; HRMS (ESI) found: m/z 611.2359 and 144.9651, calcd for C₃₅H₃₉N₄O₂Zn: [M–PF₆]⁺, 611.2356 and PF₆⁻, 144.9647. **Zn-1b**: Vis (CH₂Cl₂) $\lambda_{max} = 630$ (relative intensity, 0.11), 437 (0.81), 416 nm (1.00); HRMS (ESI) found: m/z = 611.2356 and 144.9652, calcd for C₃₅H₃₉N₄O₂Zn: [M–PF₆]⁺, 611.2356 and PF₆⁻, 144.9647.

Synthesis of zinc methyl 13¹-deoxo-22-methyl-pyroprotopheophorbide-*a* hexafluorophosphate (Zn-2)

Zinc chlorin **Zn-1a** or **Zn-1b** (ca. 1 mg) was dissolved in dry acetone (3 mL), to which was added DDQ (2 mg). The mixture was stirred at room temperature under nitrogen in the dark for 10 min. The reaction mixture was diluted with dichloromethane, washed with an aqueous 1% potassium hydrogen sulfate solution, water, and an aqueous 2% sodium hexafluorophosphate solution (twice), and dried over sodium sulfate. After filtration, the solvent was evaporated and the residue was purified with FCC (CH₂Cl₂: MeOH = 100 : 1) to give the corresponding zinc porphyrin, **Zn-2a** or **Zn-2b** as purple solid. **Zn-2a**: Vis (CH₂Cl₂) $\lambda_{max} = 585$ (relative intensity, 0.07), 547 (0.06), 440 (0.63), 424 nm (1.00); HRMS (ESI) found: m/z = 609.2200 and 144.9646, calcd for C₃₅H₃₇N₄O₂Zn: [M–PF₆]⁺, 609.2202 and PF₆⁻, 144.9647. **Zn-2b**: Vis (CH₂Cl₂) $\lambda_{max} = 585$ (relative intensity, 0.07), 547 (0.06), 440 (0.63), 424 nm (1.00); HRMS (ESI) found: m/z = 609.2194 and 144.9651, calcd for C₃₅H₃₇N₄O₂Zn: [M–PF₆]⁺, 609.2202 and PF₆⁻, 144.9647.

Synthesis of methyl 13¹-deoxo-22-methyl-pyroprotopheophorbide-*a* hexafluorophosphate (H₂-2)

Zinc porphyrin **Zn-2a** or **Zn-2b** (ca. 1 mg) was dissolved in dichloromethane (1 mL), to which was added TFA (1 mL). The mixture was stirred at room temperature in the dark for 3 min. The reaction mixture was diluted with dichloromethane, washed with an aqueous solution saturated with sodium hydrogen carbonate, water, and an aqueous 2% sodium hexafluorophosphate solution (twice), and dried over sodium sulfate. After filtration, the solvent was evaporated to give the corresponding free base porphyrin, **H₂-2a** or **H₂-2b** as purple solid. **H₂-2a** [(22R)-enantiomer]: Vis (CH₂Cl₂) $\lambda_{\text{max}} = 575$ (relative intensity, 0.09), 548 (0.08), 407 nm (1.00); HRMS (ESI) found: m/z= 547.3067 and 144.9650, calcd for C₃₅H₃₉N₄O₂: [M-PF₆]⁺, 547.3068 and PF₆⁻, 144.9647. **H**₂-2b [(22S)-enantiomer]: Vis (CH₂Cl₂) $\lambda_{max} = 575$ (relative intensity, 0.09), 548 (0.08), 407 nm (1.00); HRMS (ESI) found: m/z = 547.3064 and 144.9651, calcd for C₃₅H₃₉N₄O₂: $[M-PF_6]^+$, 547.3068 and PF_6^- , 144.9647. H₂-2: ¹H NMR (CDCl₃) $\delta =$ 10.45 (1H, s, 10-H), 10.42 (1H, s, 5-H), 10.38 (1H, s, 20-H), 8.31 (1H, dd, J = 18, 13Hz, 3^{1} -H), 6.51 (1H, dd, J = 13 Hz, 3^{2} -H *cis* to 3-C–H), 6.50 (1H, d, J = 18 Hz, 3^{2} -H trans to 3-C-H), 5.58 (2H, br-s, 13¹-CH₂), 4.31 (2H, q, J = 8 Hz, 8-CH₂), 4.28 (2H, t, J = 8 Hz, 17-CH₂), 3.96 (2H, br-s, 13-CH₂), 3.83 (3H, s, 12-CH₃), 3.83 (3H, s, 17²-COOCH₃), 3.77 (3H, s, 7-CH₃), 3.61 (3H, s, 18-CH₃), 3.39 (3H, s, 2-CH₃), 3.15 (2H, t, J = 8 Hz, 17-CH₂), 1.56 (3H, t, J = 8 Hz, 8¹-CH₃), -4.84 (3H, s, 22-CH₃) [The two inner NH signals were invisible.]; ¹³C NMR (CDCl₃) δ = 153.43, 152.93, 152.43, 146.53, 144.89, 141.98, 138.76, 136.33, 134.03, 129.85, 129.13, 128.09, 126.44, 126.35, 102.83, 101.80, 100.04, 99.08, 98.97, 98.03, 52.66, 51.69, 39.08, 32.46, 22.87, 13.12, 12.96, 12.75, 12.29, 12.26, 12.10, 11.89, 11.45, 1.57, 0.79.

Synthesis of methyl 13¹-deoxo-pyroprotopheophorbide-*a* (4)

Chlorin **3** (ca. 1 mg) was dissolved in dry acetone (3 mL), to which was dropwise added a dry acetone solution (1 mL) of DDQ (2 mg). The mixture was stirred at room temperature under nitrogen in the dark for 10 min. The reaction mixture was diluted with dichloromethane, washed with an aqueous 1% potassium hydrogen sulfate solution and water (twice), and dried over sodium sulfate. After filtration, the resulting filtrate was directly purified with FCC (CH₂Cl₂) to give the corresponding porphyrin **4** as purple solid: VIS (CH₂Cl₂) $\lambda_{max} = 620$ (relative intensity, 0.02), 568 (0.03), 542 (0.03), 505 (0.07), 404 nm (1.00): see its spectral data also in ref [s2].

References

- [s1] H. Tamiaki, S. Yagai, T. Miyatake, *Bioorg. Med. Chem.*, 6, 2171–2178 (1998).
- [s2] L. Ma, D. Dolphin, Can. J. Chem., 75, 262–275 (1997).

Fig. S1 ¹H NMR spectrum of H₂-1 in CDCl₃.

Fig. S2 ¹H NMR spectrum of H₂-1a in CDCl₃.

Fig. S3 ¹H NMR spectrum of H_2 -1b in CDCl₃.

Fig. S4 ¹³C NMR spectrum of H₂-1 in CDCl₃.

Fig. S5 13 C NMR spectrum of H₂-1a in CDCl₃.

Fig. S6 ¹³C NMR spectrum of H₂-1b in CDCl₃.

Fig. S7 19 F NMR spectrum of H₂-1 in CDCl₃.

Fig. S8 ³¹P NMR spectrum of H₂-1 in CDCl₃.

Fig. S9 ¹H NMR spectrum of H₂-2 in CDCl₃.

Fig. S10 13 C NMR spectrum of H₂-2 in CDCl₃.

Fig. S11 ¹H NMR spectrum of 4 in CDCl₃.

Fig. S12 UV-Vis absorption (A) and CD spectra (B) of 3 in CH₂Cl₂.

Fig. S13 Optimized structures of (22*R*)-**H**₂-**1** (upper) and (22*S*)-**H**₂-**1** epimers (lower) using DFT calculation [B3LYP/6-31G(D)].

The center positions of A-, B-, C-, and D-rings (see the upper left drawing of Fig. S13) were first estimated on the basis of their composite four carbon and one nitrogen atom positions. The transition dipole moment vectors in By and Bx bands were approximately estimated by the calculated vector from the C- to A-ring centers, and D- to B-ring centers, respectively. The exciton centers in By and Bx bands were also estimated by the middle point between the A- and C-ring centers, and the B- and D-ring

centers, respectively. The deviations of exciton center in the By and Bx axes for (22R)-**H**₂-1 and (22S)-**H**₂-1 were estimated to be 0.14 Å and 0.18 Å, respectively. The distance vector was estimated by the positions of the two exciton centers. Based on these parameters, their CD signs at Soret region using exciton coupling theory were proposed (Fig. S14).

Fig. S14 Proposed CD spectra of (22R)-H₂-1 (upper) and (22S)-H₂-1 epimers (lower) at the Soret region.

Fig. S15 Optimized structures of (22*R*)-**H**₂-**2** (upper) and (22*S*)-**H**₂-**2** epimers (lower) using DFT calculation [B3LYP/6-31G(D)].

The calculation method was the same as that of (22R)-H₂-1 (upper) and (22S)-H₂-1 epimers (vide supra). Both the deviations of exciton centers in the By and Bx axes for (22R)-H₂-2 and (22S)-H₂-2 were estimated to be 0.26 Å (see Fig. S15). Similar to the aforementioned exciton coupling theory, their CD signs were shown in Fig. S16.

Fig. S16 Proposed CD spectra of (22*R*)-**H**₂-**2** (upper) and (22*S*)-**H**₂-**2** epimers (lower) at the Soret region.

Fig. S17 UV-Vis (upper) and CD spectra (lower) of (N22*R*)-**Zn-1a/2a** (red) and (N22*S*)-**Zn-1b/2b** (blue) in CH₂Cl₂ (A/B).

Fig. S18 UV-Vis spectrum of 4 in CH₂Cl₂.

Fig. S19 Fluorescence emission spectra of **3** (A), **H₂-1** (B), **4** (C), and **H₂-2** (D) in aerated CH₂Cl₂ at rt: excited at main Soret maxima.