Supporting information File

Unravelling the potency of triazole analogues for inhibiting α-Synuclein fibrillogenesis and in vitro disaggregation

Mudasir Maqbool ${ }^{1}$, Joshna Gadhavi ${ }^{2}$, Anju Singh ${ }^{1}$, Pravin Hivare ${ }^{2}$, Sharad
Gupta ${ }^{2 *}$, Nasimul Hoda ${ }^{1 *}$

${ }^{1}$ Drug Design and Synthesis Lab., Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India.
${ }^{2}$ Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India.

Corresponding authors:

Nasimul Hoda, PhD
Professor
Department of Chemistry, Jamia Millia Islamia,
Jamia Nagar, New Delhi-110025, India.
Email: nhoda@jmi.ac.in

Sharad Gupta, PhD
Associate Professor
Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
E-mail: sharad@iitgn.ac.in

Scheme S1: Scheme for the synthesis of different azides

Scheme S2: Synthetic scheme for the synthesis of different alkynes

Chemistry

Procedure for the synthesis of compound 2

A mixture of aluminium chloride ($5.3 \mathrm{~g}, 39.7 \mathrm{~mol}$) and 25 mL DCM was allowed for stirring at room temperature. 3-chloropropionylchloride ($5.5 \mathrm{~g}, 43.3 \mathrm{~mol}$) dissolved in 20 mL DCM was added dropwise to the stirring solution of AlCl_{3}. After half an hour, 1,2dimethoxybenzene ($5.0 \mathrm{~g}, 36.1 \mathrm{~mol}$) was added to the reaction mixture and the mixture was allowed for stirring for 24 h at room temperature. On the completion of the reaction, the reaction mixture was poured into ice-cold water and the organic part was derived with DCM ($50 \mathrm{~mL} \times 3$). The organic layer was washed with sodium bicarbonate and brine solution and was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product (2) obtained was purified by column chromatography using ethylacetate/hexanes (25:75) in 65.5% yield.

Procedure adopted for the synthesis of compounds 3 and 5

10.6 mol of chloro-compound ($\mathbf{2}$ or $\mathbf{4}$) was dissolved in 30 mL acetone. An aqueous solution of sodium azide (63.0 mol) was added dropwise to the stirring solution at room temperature. The reaction took 3-4 days for completion. The reaction mixture was poured into ice-cold water and the organic part was extracted with diethyl ether ($30 \mathrm{~mL} \times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The compounds obtained ($\mathbf{3}$ and $\mathbf{5}$) in $65-75 \%$ yield were used for onward reaction steps without purification.

Procedure followed for the synthesis of compound 7

To a solution of 4,7-dichloroquinoline ($1.0 \mathrm{~g}, 5.0 \mathrm{~mol}$) in $30 \mathrm{~mL} \mathrm{DMSO}, \mathrm{NaN}_{3}(0.39 \mathrm{~g}$, 6.0 mol) was added. The reaction vessel was wrapped with aluminium foil to avoid light and the mixture was allowed for stirring at room temperature for $6-10 \mathrm{~h}$ duration. After the disappearance of the starting materials, the reaction mixture was poured into 50 mL water and the desired product was extracted with DCM ($20 \mathrm{~mL} \times 3$). The DCM layer was washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product 7 was purified with column chromatography using ethylacetate/hexanes (40:60), in 49\% yield.

Procedure for the synthesis of compound 10

Propargyl alcohol $(0.5 \mathrm{~g}, 8.9 \mathrm{~mol})$ was dissolved in dry DMF at $0{ }^{\circ} \mathrm{C} . \mathrm{NaH}(0.6 \mathrm{~g}, 25.0$ mol) was added in small instalments and the mixture was allowed for stirring at $0{ }^{\circ} \mathrm{C}$ for half an hour. A solution of 4,7-dichloroquinoline ($1.7 \mathrm{~g}, 8.5 \mathrm{~mol}$) was added dropwise to the reaction mixture. The reaction was allowed for string for 4 h at room temperature. After the completion, the reaction was quenched with ice-cold water and the organic compound was obtained by ethylacetate. The organic layer was washed with brine solution and dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product 10 was purified by column chromatography using ethylacetate/hexanes (15:85) in 63% yield. The pure compound obtained was white coloured powder.
General procedure for the synthesis of terminal alkyl compounds $\mathbf{1 3}, \mathbf{1 5 , 1 7 , 2 3}$ and $\mathbf{2 5}$.
In general, precursor compounds: $\mathbf{1 1 , 1 4 , 1 6 , 2 2}$ and $\mathbf{2 4}(3.32 \mathrm{~mol})$ were dissolved in 30 mL dry DMF at room temperature. Potassium carbonate (4.98 mol) was added to the stirring reaction mixtures. After $1 \mathrm{~h}, 3.98 \mathrm{~mol}$ of propargyl bromide dissolved in 20 mL dry DMF was added dropwise. The reaction mixtures were allowed for string at room temperature till the disappearance of the starting materials ($12-24 \mathrm{~h}$). The reaction mixtures were poured into icecold water and the organic compound were obtained by ethylacetate. The organic layers were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude products ($\mathbf{1 3}, \mathbf{1 5}, \mathbf{1 7}, 23$ and 25) were purified by column chromatography using ethylacetate/hexanes (usually 5:95). The pure compounds obtained in 60-70\% yield were proceeded for further reactions.

Procedure for the synthesis compound 21^{1}

A solution of resorcinol ($2.0 \mathrm{~g}, 18.16 \mathrm{~mol})$ in Ethyl acetoacetate $(2.4 \mathrm{~mL}, 19 \mathrm{~mol})$ was added dropwise to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL})$ in a round bottom flask at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed for stirring overnight at room temperature. In the next morning, the reaction mixture was carefully poured into crushed ice with continuous stirring. A solid precipitate obtained was filtered, the residue was washed with cold water and dried to obtain pale yellow powder (20) in 49% yield. In the next step, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.16 \mathrm{~g}, 8.3 \mathrm{~mol})$ was added to a solution of 7-hydroxy-4-methylchroman-2-one (20) ($1 \mathrm{~g}, 5.6 \mathrm{~mol}$) and acetone. The reaction mixture was allowed for stirring at room temperature for 1 h .8 .3 mol of propargyl bromide dissolved in 20 mL acetone was added dropwise to the reaction mixture. It took 18 h to complete the reaction at $50{ }^{\circ} \mathrm{C}$. After the completion of the reaction, the acetone was removed using vacuum rota evaporator and the organic layer was extracted with ethylacetate ($30 \mathrm{~mL} \times 3$). The organic layer was washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product $\mathbf{2 1}$ was purified by column chromatography using ethylacetate/hexanes (15:85) in 72% yield.

Prediction of solubility and lipophilicity

A web-based platform ADMETlab, designed on Django framework in Python for calculating chemical ADMET properties was used to predict drug likeliness of the compounds and whether these compounds can cross the BBB etc. ${ }^{2}$

Table S1: Predicted values of the compounds that support their ability to pass through Blood-brain barrier (BBB).

			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$		$\begin{aligned} & 000 \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$					$\begin{aligned} & \text { ö } \\ & 0 . \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & \end{aligned}$	
Tr1	452.13	-0.489	-5.323	1.788	4.349	90.077	0.862	1.022	8	0	\checkmark
Tr3	418.16	-0.115	-4.825	1.55	3.384	91.848	0.86	1.741	8	0	\checkmark
Tr5	291.31	-0.399	-2.318	0.021	1.061	69.557	0.912	1.54	7	1	\checkmark
Tr6	364.04	-0.462	-5.266	1.238	3.747	92.652	0.932	0.796	6	0	\checkmark
Tr7	442.11	-0.574	-4.942	1.734	3.768	92.1	0.735	0.739	7	1	\checkmark
Tr8	455.16	-0.659	-3.967	1.62	2.598	87.153	0.684	1.05	6	0	\checkmark
Tr9	449.16	-0.325	-4.923	1.305	3.562	91.85	0.667	1.307	7	0	\checkmark
Tr10	418.08	-0.425	-5.152	1.387	4.463	92.109	0.831	1.237	7	0	\checkmark
Tr11	387.09	-0.002	-4.916	2.84	4.284	84.548	0.947	1.189	9	0	\checkmark
Tr12	409.02	-0.03	-5.735	2.886	5.371	84.673	0.93	0.806	7	1	\checkmark
Tr13	422.07	-0.154	-4.905	1.603	4.646	89.554	0.881	1.248	6	0	\checkmark
Tr14	409.16	-0.312	-4.723	1.529	3.35	89.116	0.882	1.379	6	0	\checkmark
Tr15	420.14	-0.753	-4.228	0.712	2.298	91.483	0.913	0.959	6	0	\checkmark
Tr16	409.16	-0.384	-4.702	1.521	3.35	88.732	0.867	1.403	8	0	\checkmark
Tr17	378.09	-0.298	-5.409	1.532	4.251	93.711	0.918	0.986	8	0	\checkmark
Tr18	378.09	-0.272	-5.437	1.545	4.251	93.414	0.929	0.991	8	0	\checkmark

Spectral data

Figure S1: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 1$

Figure S2: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r} 1$

Figure S3: Mass spectrum of Tr1

Figure S4: ${ }^{\mathbf{1}} \mathbf{H}$ NMR of Tr3

Figure S5: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r} 3$

Figure S6: Mass spectrum of Tr3

Figure S7: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 5$

Figure S8: ${ }^{13} \mathrm{C}$ NMR of $\operatorname{Tr} 5$

Figure S9: Mass spectrum of $\operatorname{Tr} 5$

Figure S10: ${ }^{\mathbf{1}} \mathbf{H}$ NMR of Tr6

Figure S11: ${ }^{13}$ C NMR of Tr6

Figure S12a: Mass spectrum of Tr6

Figure S12b: Mass spectrum of Tr6

Figure S13: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 7$

Figure S14: ${ }^{13}$ C NMR of $\operatorname{Tr} 7$

Figure S15: Mass spectrum of Tr7

Figure S16: ${ }^{1} \mathrm{H}$ NMR of Tr8

Figure S17: ${ }^{13} \mathrm{C}$ NMR of $\operatorname{Tr} 8$

Figure S18: Mass spectrum of Tr8

Figure S19: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{T r} 9$

Figure S20: ${ }^{13} \mathbf{C}$ NMR of $\mathbf{T r} 9$

Figure S21: Mass spectrum of Tr9

Figure S22: ${ }^{1} \mathbf{H}$ NMR of $\mathbf{T r} 10$

Figure S23: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r 1 0}$

Figure S24: Mass spectrum of $\operatorname{Tr} 10$

Figure S25: ${ }^{\mathbf{1}} \mathbf{H}$ NMR of Tr11

Figure S26: ${ }^{13} \mathrm{C}$ NMR of Tr11

Figure S27: Mass spectrum of $\mathbf{T r} 11$

Figure S28: ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{T r} 12$

Figure S29: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r 1 2}$

Figure S30: Mass spectrum of $\mathbf{T r} 12$

Figure S31: ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{T r} 13$

Figure S32: ${ }^{13} \mathrm{C}$ NMR of $\operatorname{Tr} 13$

- TIC from Sample 53 (TR-13) of 060318 wiff (Turbo Spray)

Max. 1.9 e 8 cps

- Q1: Exp 2, 0.321 to 0.592 min from Sample 53 (TR-13) of 060318 wiff (Turbo Spray), subtracted (0.050 to $0 . .$.

$\begin{array}{ll}\text { 듣 } & \\ \stackrel{\text { ․ }}{ } & 5.0 \mathrm{c}\end{array}$

Figure S33: Mass spectrum of Tr13

Figure S34: ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{T r} 14$

Figure S35: ${ }^{13}$ C NMR of Tr14

Figure S36: Mass spectrum of $\operatorname{Tr} 14$

Figure S37: ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{T r} 15$

Figure S38: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r} 15$

Figure S39: Mass spectrum of $\operatorname{Tr} 15$

Figure S40: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 16$

Figure S41: ${ }^{13} \mathrm{C}$ NMR of $\operatorname{Tr} 16$

$$
\text { II TIC from Sample } 32 \text { (TR-16) of } 160318 \text {.wiff (Turbo Spray) }
$$

+Q1: Exp 1, 0.366 to 0.547 min fram Sample 32 (TR-16) of 160318 wiff (Turbo Spray), subtracted (0.005 to $0 \ldots$.... Max. 6.6 e 7 cps .

- Q1: Exp 2, 0.411 to 0.592 min from Sample 32 (TR-16) of 160318 .wiff (Turbo Spray), subtracted (0.050 to $0 . .$.

Max. 1.7 e 7 cps.

Figure S42: Mass spectrum of $\operatorname{Tr} 16$

Figure S43: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 17$

Figure S44: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r} 17$

Figure S45: Mass spectrum of $\operatorname{Tr} 17$

Figure S46: ${ }^{1} \mathrm{H}$ NMR of $\operatorname{Tr} 18$

Figure S47: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T r 1 8}$

Figure S48: Mass spectrum of $\operatorname{Tr} 18$

References

1 N. Yadav, D. Agarwal, S. Kumar, A. K. Dixit, R. D. Gupta and S. K. Awasthi, Eur. J. Med. Chem., 2018, 145, 735-745.

2 J. Dong, N.-N. Wang, Z.-J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.-P. Lu and D.-S. Cao, J. Cheminform., 2018, 10, 29.

