Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Stereoselective total syntheses of (-)-hygrophorone A¹², 4-O-acetyl-

hygrophorone A¹² and (+)-hygrophorone B¹²

Sayani Das, Anu Dalal and Shivajirao L. Gholap*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 *Email: slgholap@chemistry.iitd.ac.in; Tel: +91 11 26591316

Table of Contents

Copies of ¹ H and ¹³ C-NMR spectra of compound 10	S-02
Copies of ¹ H and ¹³ C-NMR spectra of compound 11	S-03
Copies of ¹ H and ¹³ C-NMR spectra of compound 12	S-04
Copies of ¹ H and ¹³ C-NMR spectra of compound 13	S-05
Copies of ¹ H and ¹³ C-NMR spectra of compound 8	S-06
Copies of ¹ H and ¹³ C-NMR spectra of compound 14	S-07
Copies of ¹ H and ¹³ C-NMR spectra of compound 15	S-08
Copies of ¹ H and ¹³ C-NMR spectra of compound 7	S-09
Copies of ¹ H and ¹³ C-NMR spectra of compound 6	S-10
Copies of ¹ H and ¹³ C-NMR spectra of compound 16	S-11
Copies of ¹ H and ¹³ C-NMR spectra of (-)-hygrophorone A ¹² 1	S-12
Copies of ¹ H and ¹³ C-NMR spectra of (+)-hygrophorone A ¹² ent-1	S-13
Copies of ¹ H and ¹³ C-NMR spectra of compound 17	S-14
Copies of ¹ H and ¹³ C-NMR spectra of compound 18	S-15
Copies of ¹ H and ¹³ C-NMR spectra of 4- <i>O</i> -acetyl-hygrophorone A ¹² 2	S-16
Copies of ¹ H and ¹³ C-NMR spectra of compound 19	S-17
Copies of ¹ H and ¹³ C-NMR spectra of compound 20	S-18
Copies of ¹ H and ¹³ C-NMR spectra of compound 21	S-19
Copies of ¹ H and ¹³ C-NMR spectra of (+)-hygrophorone B ¹² 2	S-20
Single crystal X-ray diffraction data for (+)-hygrophorone A ¹² ent-1	S-21

 $^1\mathrm{H}$ NMR of compound 10 (400 MHz) in CDCl_3

¹³C NMR of compound **10** (125 MHz) in CDCl₃

 1 H NMR of compound **11** (400 MHz) in CDCl₃

¹³C NMR of compound **11** (100 MHz) in CDCl₃

¹H NMR of compound **12** (500 MHz) in CDCl₃

¹³C NMR of compound **12** (75 MHz) in CDCl₃

$^1\mathrm{H}$ NMR of compound 13 (400 MHz) in CDCl_3

¹³C NMR of compound **13** (100 MHz) in CDCl₃

 $^1\mathrm{H}$ NMR of compound 8 (400 MHz) in CDCl_3

¹³C NMR of compound 8 (125 MHz) in CDCl₃

¹H NMR of compound 14 (500 MHz) in CDCl₃

¹³C NMR of compound **14** (125 MHz) in CDCl₃

$^1\mathrm{H}$ NMR of compound 15 (500 MHz) in CDCl_3

¹³C NMR of compound **15** (100 MHz) in CDCl₃

$^1\mathrm{H}$ NMR of compound 7 (500 MHz) in CDCl_3

¹³C NMR of compound 7 (125 MHz) in CDCl₃

¹H NMR of compound 6 (500 MHz) in CDCl₃

¹³C NMR of compound 6 (125 MHz) in CDCl₃

¹H NMR of compound **16** (500 MHz) in CDCl₃

¹³C NMR of compound **16** (125 MHz) in CDCl₃

¹H NMR of (–)-hygrophorone A^{12} 1 (500 MHz) in CDCl₃

¹³C NMR of (-)-hygrophorone A¹² 1 (125 MHz) in CDCl₃

¹H NMR of (+)-hygrophorone A¹² ent-1 (500 MHz) in CDCl₃

¹³C NMR of (+)-hygrophorone A¹² ent-1 (125 MHz) in CDCl₃

 $^1\mathrm{H}$ NMR of compound 17 (500 MHz) in CDCl_3

¹³C NMR of compound **17** (100 MHz) in CDCl₃

¹H NMR of compound **18** (500 MHz) in CDCl₃

¹³C NMR of compound **18** (100 MHz) in CDCl₃

¹H NMR of 4-O-acetyl-hygrophorone A¹² 2 (400 MHz) in CDCl₃

¹³C NMR of 4-O-acetyl-hygrophorone A¹² 2 (100 MHz) in CDCl₃

 $^1\mathrm{H}$ NMR of compound 19 (500 MHz) in CDCl_3

 ^{13}C NMR of compound 19 (125 MHz) in CDCl_3

¹H NMR of compound **20** (500 MHz) in CDCl₃

¹³C NMR of compound **20** (125 MHz) in CDCl₃

 $^1\mathrm{H}$ NMR of compound **21** (500 MHz) in CDCl_3

¹³C NMR of compound **21** (100 MHz) in CDCl₃

¹H NMR of (+)-hygrophorone B¹² **3** (400 MHz) in CDCl₃

¹³C NMR of (+)-hygrophorone B¹² **3** (125 MHz) in CDCl₃

Single crystal X-ray diffraction data for (+)-hygrophorone A¹² *ent*-1 was collected using a Bruker SMART APEX diffractometer equipped with a 3-axis goniometer (Table S1).¹ The crystals were covered with Paratone-N and mounted on a glass capillary. The data was collected at 273 K using Mo K α radiation ($\lambda = 0.71073$ Å). The integration of data was performed using the SAINT. Empirical absorption correction was applied using SADABS.² Structural solution was accomplished by direct method and refined by full-matrix least-square on F 2 using either SHELXTL³ or SHELXL-2013 incorporated in OLEX2. All the non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were fixed according to a riding model and were refined isotropically. Important crystallographic data are provided in Table S1.⁴

Figure 1. Molecular structure of (+)-hygrophorone A¹² *ent*-**1** from X-ray crystallography. All hydrogen atoms of alkyl chains are omitted for clarity and and thermal ellipsoids are shown at the 30% probability level. Data collection temperature: 273 K.

Empirical formula	$C_{18}H_{32}O_4$
Formula weight	312.44
Temperature, K	273.15
Wavelength, Å	0.71073
Crystal system	monoclinic
Space group	P2 ₁
<i>a</i> , Å	7.9985(6)
b, Å	10.3197(6)
<i>c</i> , Å	22.4140(14)
α , deg	90
β , deg	93.464(2)
γ, deg	90
Volume, Å ³	1846.7(2)
Z	4
Density (calcd), mg/m ³	1.124
Absorption coefficient, mm ⁻¹	0.077
F(000)	688.0
Crystal size, mm ³	0.17 imes 0.12 imes 0.11
θ range for data collection, deg	4.346 to 56.612
Limiting indices	$-10 \le h \le 10, -13 \le k \le 13, -29 \le l \le 29$
No. of reflection collected	48074
No. of independent reflection	9176
Refinement method	Full-matrix least-squares on F^2
No. of data/restraints/ parameters	9176/1/405
Goodness-of-fit on F^2	1.025
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0501, wR_2 = 0.1023$
<i>R</i> indices (all data)	$R_1 = 0.0862, wR_2 = 0.1169$
Largest diff peak and hole, e $Å^{-3}$	0.14/-0.16

 Table S1. Crystal data and structure refinement for (+)-hygrophorone ent-1

References:

1. SMART, Bruker Molecular Analysis Research Tool, Version 5.618, Bruker AXS, Madison, WI (2000).

2. SAINT-NT, Version 6.04; Bruker AXS, WI (2001).

3. SHELXTL-NT, Version 6.10, Bruker AXS, Madison, WI (2000).

4. **CCDC 2035478** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.