Supporting Information

A Solvent-specific DAST-mediated intramolecular Friedel-Crafts reaction: access to dibenzoxepine-fused spirooxindoles

Ramesh Samikannu,[†] Sankaranarayanan Sethuraman,[†] Nagaraja Akula,[†] Vignesh Radhakrishnan,[†] Srinivasarao Kamisetti,[†] Shabana Banu,[†] Muthalagu Vetrichelvan,^{†*} Anuradha Gupta,[†] Jianqing Li,[§] Richard Rampulla,^δ Arvind Mathur^{†δ}

[†]Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Road, Bangalore 560100, India

[§]Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney St., Cambridge, MA 02142, USA

^δSmall Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, USA

Table of contents

1.	General	S3
2.	Procedure and data for the starting materials (1a – 1aa)	S 3
	a. Method – A	S3
	b. Method – B	S 3
	c. Method – C	S4
	d. Method – D	S 5
	e. Data for the starting materials	S6
3.	Crystal structure data and refinement details for compound 3f	S12
4.	Cross over and control experiment	S13
5.	Spectral data for the final compounds (3a – 3aa)	S15
6.	References	S78

1. General

All reactions were performed under a nitrogen atmosphere unless otherwise specified. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F_{254} pre-coated plates and visualized by a UV lamp for reaction monitoring. ¹H NMR (400 MHz) and ¹⁹F NMR spectra were measured, and chemical shifts were reported in ppm using TMS or the residual solvent peak as a reference. LC-MS analyses conducted using the Agilent 6140 quadrupole LCMS instrument using C18 columns.

2. Procedure and data for the starting materials (1a – 1aa)

a. <u>General Method – A.</u>¹

To a stirred suspension of magnesium turnings (2.5 eq.), in dry THF, was added 1,2dibromoethane (0.1 eq.) under nitrogen and allowed to stir for 15 minutes. After 15 minutes, a solution of 1-bromo-2-((3-methoxybenzyl)oxy)benzene (11) (1.5 eq.) in dry THF was added dropwise and the reaction suspension was occasionally heated with a hot gun (50 °C) for initiation. After 30 minutes, the reaction suspension was refluxed for 1 h under nitrogen and then cooled to ambient temperature. To a separate flask, was added isatin, 10 (1 eq.) in dry THF and the solution was cooled to -20 °C under nitrogen. After 10 minutes, the above prepared Grignard reagent was added dropwise over 5 minutes. The reaction mixture was slowly warmed to ambient temperature and stirred for 12 h. After cooling to 0 °C, a saturated NH₄Cl solution (20 mL) was added slowly at 0 °C, followed by the addition of ethyl acetate (3 x 50 mL). The organic layer was separated, washed with water (3 x 50 mL) and brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by flash chromatography using a mixture of petroleum ether and EtOAc as eluent to afford pure compound 1.

b. <u>General Method – B.²</u>

A Schlenk round bottom flask was charged with magnesium (0.062 g, 2.56 mmol), dry THF (5 mL) and 1,2-dibromoethane (0.1 eq.) under a nitrogen atmosphere and stirred until an exothermic reaction occurred (~10 minutes). 2-Bromo-4-chloro-1-((3-methoxybenzyl)oxy)benzene (**11**, 0.571 g, 1.743 mmol) in dry THF (3 mL) was added slowly over 10 minutes. Once the exothermic reaction had subsided, the reaction mixture was heated at reflux for 1 h and then allowed to cool to room temperature.

A separate round bottom flask was charged with 6-(trifluoromethyl))indoline-2,3-dione (10) (1.162 mmol) and dry THF (5 mL) under nitrogen. The solution was cooled to 0 °C, NaH (0.056 g, 1.394 mmol) added portion-wise and the mixture stirred until gas evolution ceased. The resulting suspension of the sodium salt of 6-(trifluoromethyl))indoline-2,3-dione (10) (1.162 mmol) was cooled to -30 °C, and the above Grignard reagent added *via* a syringe. The reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. The progress of the reaction was monitored by TLC or LCMS. Upon completion of the reaction, the mixture was quenched with a saturated solution of NH₄Cl (20 mL) and extracted with ethyl acetate (3 x 50 mL). The organic extract was washed with brine (40 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give the crude product which was purified by flash column chromatography using a mixture of petroleum ether and EtOAc as eluent to furnish the compound **1**.

c. <u>General Method – C.</u>³

A solution of 1-bromo-2-((3-methoxybenzyl)oxy)benzene (11) (2.5 eq.) in anhydrous THF (10 vol.) was cooled to -78 °C under argon. After 15 minutes, a solution of *n*-BuLi (1.6 M in hexane, 2.5 eq.) was added dropwise over 15 minutes. The resulting pale yellow solution was stirred for 30 minutes before being added via cannula to cooled solution of isatin (10) (1 eq.) in anhydrous THF maintained at -78 °C. The reaction mixture was slowly warmed to ambient temperature. The reaction progress was monitored by TLC for the consumption of isatin starting material. Upon completion, the reaction mixture was cooled to 0 °C and quenched with a saturated solution of NH₄Cl (20 mL), followed by extraction with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water (3 x 50 mL) and brine (40 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography using a mixture of petroleum ether and EtOAc as eluent to afford pure **1**.

d. General Method – D.⁴

Step 1. Addition of magnesium phenolates to isatins. A solution of EtMgBr (1.1 eq., 1 M in THF) was added dropwise to a solution of phenol (1.2 eq., both unsubstituted and substituted analogues) in anhydrous THF (10 vol) maintained at 0 °C. The white suspension was stirred for 15 mins and the reaction mixture concentrated to dryness. The white bromo magnesium phenolate residue obtained was dissolved in DCM (10 vol), and the isatin (**10**,1 eq.) was added. The reaction mixture was stirred at room temperature and the progress monitored by TLC (if there was no any reaction at RT, the reaction mixture was quenched by the addition of 1N HCl (20 mL), the organic layer was separated and washed with water (2 x 30 mL), brine (30 mL) and dried over sodium sulfate. The crude product was purified either by flash chromatography using a mixture of petroleum ether and EtOAc as eluent or by recrystallization to afford the intermediate **10A**.

<u>Step-2. Benzylation of phenolic OH</u>. To a solution of the intermediate **10A** in anhydrous DMF at 25 °C was added anhydrous K_2CO_3 (2 eq.) and 1-(bromomethyl)-3-methoxybenzene (1.2 eq). The reaction mixture was stirred at ambient temperature for

12 h, before quenching with ice-cold water (15 mL), followed by extraction with ethyl acetate (3 x 30 mL). The combined organic layers were washed with water (2 x 20 mL) and brine (20 mL), dried over anhydrous Na_2SO_4 , filtered and concentrated. The crude residue obtained was purified either by flash chromatography using a mixture of petroleum ether and EtOAc as eluent or by recrystallization to afford pure **1**.

2.e. Spectral data of the synthesized starting materials 1a - 1aa.

Compound 1a. 3-hydroxy-3-(2-((3-methoxybenzyl)oxy)- phenyl)indolin-2one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 400 MHz) δ 10.17 (s, 1H), 7.88 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.07–7.26 (m, 4H), 6.92–7.07 (m, 1H), 6.71–6.89 (m, 6H), 6.62 (s, 1H), 6.42–6.47 (m, 2H), 4.72–4.86 (m, 2H), 3.70 (s, 3H); LCMS (ESI) calcd for (M–H)⁺ C₂₂H₁₉NO₄ 360.40; found 360.12.

Compound 1b. 3-hydroxy-5-methoxy-3-(2-((3-methoxy-benzyl)oxy) phenyl)indolin-2-one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 400 MHz) δ 10.02 (s, 1H), 7.86 (dd, J = 7.8, 1.7 Hz, 1H), 7.08-7.26 (m, 2H), 7.02 (td, J = 7.6, 1.0 Hz, 1H), 6.59–6.88 (m, 6H), 6.50 (d, J = 8.0 Hz, 1H), 6.45 (s, 1H), 6.37 (d, J = 2.7 Hz, 1H), 4.77–4.87 (m, 2H), 3.68–3.79 (m, 3H), 3.62 (s, 3H); ¹H NMR (DMSO-d₆, 400 MHz) δ 7.08–7.28 (m, 2H), 6.66–6.89 (m, 5H), 4.77–4.87 (m, 2H), 3.65–3.75 (m, 3H), 3.60–3.73 (m, 3H); LCMS (ESI) calcd for (M–H)⁺ C₂₃H₂₁NO₅ 390.42; found 390.12.

Compound 1c. 5-chloro-3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl) indolin-2-one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 300 MHz) δ 10.35 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 6.99–7.29 (m, 4H), 6.64–6.89 (m, 5H), 6.59 (s, 1H), 6.44 (d, J = 7.3 Hz, 1H), 4.75–4.90 (m, 2H), 3.70 (s, 3H); LCMS (ESI) calcd for (M–H)⁺ C₂₂H₁₈ClNO₄ 394.84, found 394.05.

Compound 1d. 3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl)-6-(trifluoro methyl)indolin-2-one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 300 MHz) δ 10.47 (s, 1H), 7.87 (d, J = 7.3 Hz, 1H), 7.17–7.29 (m, 2H), 6.78–7.12 (m, 6H), 6.73 (s, 1H), 6.55 (s, 1H), 6.35 (d, J = 7.3 Hz, 1H), 4.69–4.88 (m, 2H), 3.68 (s, 3H); ¹⁹F NMR (CDCl₃, 377 MHz) δ -61.73 (s, 3F); LCMS (ESI) calcd for (M–H)⁺ C₂₃H₁₈F₃NO₄ 428.40, found 428.11.

Compound 1e. 5-fluoro-3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl) indolin-2-one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 400 MHz) δ 10.23 (s, 1H), 7.86 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.24 (td, *J* = 7.8, 1.5 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.95–7.07 (m, 2H), 6.87 (d, *J* = 8.1 Hz, 1H),

6.80 (d, J = 8.4 Hz, 1H), 6.58–6.69 (m, 4H), 6.49 (d, J = 7.5 Hz, 1H), 4.76–4.88 (m, 2H), 3.70 (s, 3H); ¹⁹F NMR (DMSO-d₆, 377 MHz) δ 120.8 (s, 1F); LCMS (ESI) calcd for (M + NH₄)⁺, C₂₂H₁₈F₃NO₄ 397.39; found 397.20.

Compound 1f. 3-(5-chloro-2-((3-methoxybenzyl)oxy)phenyl)-3-hydroxy-6-(trifluoromethyl)indolin-2-one was prepared according to the Method B. ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, J = 2.5 Hz, 1H), 7.52 (br s, 1H), 7.30–7.37 (m, 1H), 7.15–7.27 (m, 3H), 6.90 (dd, J = 8.0, 2.0 Hz, 1H), 6.80 (d, J = 9.0 Hz, 1H), 6.77 (s, 1H), 6.57–6.65 (m, 2H), 4.80 (d, J = 10.5 Hz, 1H), 4.71 (d, J = 10.5 Hz, 1H), 3.77 (s, 3H), 3.40 (br s, 1H); ¹⁹F NMR (CDCl₃, 377 MHz) δ -62.73 (s, 3F); HRMS m/z (ESI): calcd. for C₂₃H₁₇ClF₃NO₄ [M+H]⁺ 464.84; found 464.80.

Compound 1g. 3-hydroxy-3-(2-((3-methoxybenzyl)oxy) phenyl)-1-methyl-6-(trifluoromethyl)indolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.90 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.18–7.34 (m, 4H), 6.95–7.15 (m, 2H), 6.82-6.90 (m, 2H), 6.69–6.79 (m, 1H), 6.49–6.63 (m, 2H), 4.61–4.74 (m, 2H), 3.68-3.83 (m, 3H), 3.36 (s, 1H), 2.62 (s, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.55 (s, 3F); LCMS (ESI) calcd for (M+H)⁺ C₂₄H₂₀F₃NO₄ 444.42; found 444.20.

Compound 1h. 5-chloro-3-(3-fluoro-2-((3-methoxybenzyl) oxy)phenyl)-3hydroxy-1-methylindolin-2-one was prepared according to the Method D. ¹H NMR (CDCl₃, 400 MHz) δ 7.59–7.68 (m, 1H), 7.08–7.28 (m, 5H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.84 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.63–6.72 (m, 2H), 6.46 (d, *J* = 8.0 Hz, 1H), 4.92 (d, *J* = 10.5 Hz, 1H), 4.60 (d, *J* = 10.5 Hz, 1H), 3.79 (s, 3H), 3.56 (br s, 1H), 2.61 (s, 3H); ¹⁹F NMR (DMSO-d₆, 377 MHz): δ -129.95 (s, 1F); LCMS (ESI) calcd for (M+H)⁺ C₂₃H₁₉ClFNO₄ 428.86; found 428.20

Compound 1i. 5-chloro-3-(5-chloro-2-((3-methoxybenzyl)oxy) phenyl)-3hydroxy-1-methylindolin-2-one was prepared according to the Method D. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.83 (d, *J* = 3.0 Hz, 1H), 7.30–7.38 (m, 2H), 7.22 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.85–6.93 (m, 3H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.52 (s, 1H), 6.46 (d, *J*=7.5 Hz, 1H), 4.74 (s, 2H), 3.74 (s, 3H), 2.66 (s, 3H); LCMS (ESI) calcd for (M+2H)⁺ C₂₃H₁₉Cl₂NO₄ 446.31; found 446.20.

Compound 1j. 3-hydroxy-5-methoxy-3-(2-((3-methoxybenzyl)oxy)phenyl) -1-methylindolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (d, J = 7.5 Hz, 1H), 7.17–7.33 (m, 3H), 7.07 (t, J = 7.5 Hz, 1H), 6.76–6.90 (m, 3H), 6.58–6.71 (m, 3H), 6.48 (d, J = 8.5 Hz, 1H), 4.66–4.80 (m, 2H), 3.78 (s, 3H), 3.71 (s, 3H), 3.24 (s, 1H), 2.64 (s, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₄H₂₃NO₅ 406.45; found 406.25.

Compound 1k. 5-chloro-3-hydroxy-3-(2-((3-methoxybenzyl) oxy)phenyl)-1-methylindolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (dd, J = 7.5, 1.5 Hz, 1H), 7.18–7.34 (m, 3H), 7.09 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 2.0 Hz, 1H), 6.79–6.93 (m, 2H), 6.63 (d, J = 7.0 Hz, 1H), 6.56 (s, 1H), 6.45 (d, J = 8.5 Hz, 1H), 4.66–4.77 (m, 2H), 3.72–3.84 (m, 3H), 3.22 (s, 1H), 2.61 (s, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₃H₂₀ClNO₄ 410.87; found 410.20.

Compound 11. 3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl)-1-methyl indolin-2-one was prepared according to the Method A. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.89 (dd, J = 7.5, 1.5 Hz, 1H), 7.81–7.97 (m, 1H), 7.14–7.29 (m, 2H), 7.13–7.30 (m, 1H), 7.00–7.09 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.80–6.93 (m, 3H), 6.78–6.93 (m, 1H), 6.66–6.72 (m, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.50–6.55 (m, 1H), 6.53 (s, 1H), 6.48 (s, 1H), 6.45 (d, J = 7.6 Hz, 1H), 6.42–6.49 (m, 1H), 4.61–4.74 (m, 2H), 3.72 (s, 3H), 2.64 (s, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₃H₂₁NO₄ 376.15; found 376.20.

Compound 1m. 3-(2-((3,5-dimethoxybenzyl)oxy)phenyl)-3-hydroxy-1methylindolin-2-one was prepared according to the Method C. ¹H NMR (DMSO-d₆,400 MHz) δ 7.89 (d, J = 7.7 Hz, 1H), 7.27–7.21 (m, 2H), 7.05 (dt, J = 1.0, 7.5 Hz, 1H), 6.92–6.82 (m, 3H), 6.71 (d, J = 7.5 Hz, 1H), 6.50 (s, 1H), 6.42 (t, J = 2.3 Hz, 1H), 6.16 (d, J = 2.0 Hz, 2H), 4.70–4.60 (m, 2H), 3.71 (s, 6H), 2.73 (s, 3H); LCMS (ESI) calcd for (M + H)⁺C₂₄H₂₃NO₅ 406.45; found 406.45.

Compound 1n .1-benzyl-3-hydroxy-3-(2-((3-methoxybenzyl) oxy)phenyl)-6-(trifluoromethyl)indolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (dd, J = 7.8, 1.3 Hz, 1H), 7.06–7.32 (m, 9H), 6.91 (dd, J = 8.3, 2.3 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 13.6 Hz, 2H), 6.52 (d, J = 7.5 Hz, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.63–4.71 (m, 2H), 3.77 (s, 3H), 3.61 (d, J = 16.1 Hz, 1H); ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.6 (s, 3F); LCMS (ESI) calcd for (M + H)⁺ C₃₀H₂₄F₃NO₄ 520.52; found 520.20.

Compound 1o. 1-benzyl-5-chloro-3-(3-chloro-2-((3-methoxy benzyl)oxy) phenyl)-3-hydroxyindolin-2-one was prepared according to the Method D. ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (br d, J = 8.0 Hz, 1H), 7.40 (dd, J = 8.0, 1.5 Hz, 1H), 7.06–7.30 (m, 8H), 6.90 (dd, J = 8.3, 2.3 Hz, 1H), 6.75–6.85 (m, 2H), 6.36 (d, J = 8.5 Hz, 1H), 5.05 (d, J = 11.5 Hz, 1H), 4.94 (d, J = 16.1 Hz, 1H), 4.26 (br d, J = 11.0 Hz, 1H), 3.82 (s, 3H), 3.55 (br d, J = 16.1 Hz, 1H); LCMS (ESI) calcd for (M +H)⁺ C₂₉H₂₃Cl₂NO₄ 521.41; found 521.2.

Compound 1q. 1-benzyl-5-chloro-3-hydroxy-3-(2-((3-methoxybenzyl) oxy) phenyl)indolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.90–7.95 (m, 1H), 7.12–7.37 (m, 11H), 7.07 (d, *J* = 2.0 Hz, 1H), 6.87–6.98 (m, 2H), 6.63–6.71 (m, 2H), 6.40 (d, *J* = 8.5 Hz, 1H), 4.88 (d, *J* = 16.1 Hz, 1H), 4.76 (s, 2H), 3.82 (s, 3H), 3.70 (d, *J* = 15.6 Hz, 1H), 3.32 (br s, 1H); LCMS (ESI) calcd for (M + H)⁺ C₂₉H₂₄ClNO₄ 486.96; found 486.20.

Compound 1r. 1-benzyl-5-chloro-3-(5-fluoro-2-((3-methoxybenzyl)oxy) phenyl)-3-hydroxyindolin-2-one was prepared according to the Method D. ¹H NMR (DMSO-d₆, 400 MHz) δ .66 (dd, J = 9.8, 3.3 Hz, 1H), 7.20–7.33 (m, 7H), 7.12 (td, J = 8.5, 3.0 Hz, 1H), 7.04 (s, 1H), 6.87–6.95 (m, 3H), 6.64 (d, J = 8.0 Hz, 1H), 6.54 (s, 1H), 6.43 (d, J = 7.5 Hz, 1H), 4.68–4.84 (m, 2H), 4.58–4.66 (m, 1H), 3.97 (d, J = 16.1 Hz, 1H), 3.69-3.77 (m, 3H); ¹⁹F NMR (DMSO-d₆, 377 MHz) δ –123.3 (s, 1F); LCMS (ESI) calcd for (M+H)⁺ C₂₉H₂₃ClFNO₄ 504.95; found 504.20.

Compound 1s. 1-benzyl-3-(4-fluoro-2-((3-methoxybenzyl) oxy)phenyl)-3hydroxyindolin-2-one was prepared according to the Method A. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.66 (dd, J = 9.8, 3.3 Hz, 1H), 7.20–7.33 (m, 7H), 7.12 (td, J = 8.5, 3.0 Hz, 1H), 7.04 (s, 1H), 6.87–6.95 (m, 3H), 6.64 (d, J = 8.0 Hz, 1H), 6.54 (s, 1H), 6.43 (d, J = 7.5 Hz, 1H), 4.68–4.84 (m, 2H), 4.58–4.66 (m, 1H), 3.97 (d, J = 16.1 Hz, 1H), 3.69-3.77 (m, 3H); ¹⁹F NMR (DMSO-d₆, 376 MHz) δ 123.5 (s, 1F); LCMS (ESI) calcd for (M + H)⁺ C₂₉H₂₄FNO₄ 470.51; found 470.20.

Compound 1t. Diastereomeric mixture (50 :50). 3-hydroxy-3-(2-(1-(3methoxy phenyl)ethoxy)phenyl)-1-methylindolin-2-one was prepared according to the Method C. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.87 (dd, J = 7.5, 1.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 6.90–7.10 (m, 5H), 6.75–6.87 (m, 4H), 6.54 (s, 1H), 6.48 (d, J = 8.0 Hz, 1H), 5.06 (q, J=6.0 Hz, 1H), 3.74 (s, 3H), 3.19 (s, 3H), 0.89 (d, J = 6.5 Hz, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₃H₂₁NO₄ 390.45; found 390.20.

Compound 1u. 3-hydroxy-1-methyl-3-(2-(1-(3-morpholinophenyl)ethoxy) phenyl)indolin-2-one was prepared according to the Method C as a diastereomeric mixture in a ratio of 50:50. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.86 (ddd, J = 1.5, 4.3, 7.8 Hz, 1H), 7.37–7.22 (m, 1H), 7.16–7.03 (m, 2H), 7.00–6.83 (m, 4H), 6.81–6.74 (m, 1H), 6.72–6.60 (m, 1H), 6.54 (d, J = 8.2 Hz, 1H), 6.52–6.46 (m, 1H), 6.25 (s, 1H), 5.90 (d, J = 7.5 Hz, 1H), 5.13 (q, J = 6.0 Hz, 1H), 3.70 (td, J = 4.8, 16.1 Hz, 4H), 3.38–3.24 (m, 1H), 3.18 (d, J = 2.5 Hz, 3H), 3.15–3.07 (m, 2H), 2.93–2.77 (m, 2H), 1.18 (d, J = 6.5 Hz, 2H), 0.89 (d, J = 6.5 Hz, 1H); HRMS m/z (ESI) calcd. for C₂₇H₂₈N₂O₄ [M+H]⁺ 445.2127; found 445.2109.

Compound 1v. 3-hydroxy-1-methyl-3-(2-(1-(3-(4-methylpiperazin-1-yl) phenyl)ethoxy)phenyl)indolin-2-one was prepared according to the Method C as a diastereomeric mixture in a ratio of 60:40. ¹H NMR (400 MHz, DMSO-d₆) δ 7.88–7.82 (m, 1H), 7.61–7.41 (m, 1H), 7.38–7.26 (m, 1H), 7.11–7.02 (m, 2H), 7.00–6.73 (m, 4H), 6.67–6.57 (m, 1H), 6.56–6.45 (m, 1H), 6.24 (s, 1H), 5.86 (d, *J* = 7.5 Hz, 1H), 5.12 (q, *J* = 6.0 Hz, 1H), 3.22–3.07 (m, 4H), 2.95–2.77 (m, 3H), 2.73–2.52 (m, 1H), 2.46–2.26 (m, 4H), 2.20 (s, 3H), 1.90 (s, 1H), 1.61–1.37 (m, 1H), 1.34–1.07 (m, 3H), 0.93–0.83 (m, 1H), 0.83–0.66 (m, 1H); HRMS m/z (ESI) calcd. for C₂₈H₃₁N₃O₃ [M+H]⁺ 458.2444; found 458.2435.

Compound 1w. 3-hydroxy-3-(2-((3-methoxybenzyl)thio) phenyl)-6-(trifluoromethyl)indolin-2-one was prepared according to the Method B. ¹H NMR (DMSO-d₆, 400MHz) δ (7.62 (d, J = 8.0 Hz, 1H), 7.54 (s, 2H), 7.13–7.32 (m, 3H), 6.99–7.09 (m, 2H), 6.70–6.98 (m, 6H), 6.55 (d, J = 7.5 Hz, 1H), 6.46-6.52 (m, 1H), 6.34–6.44 (m, 1H), 6.21 (s, 1H), 6.14 (d, J = 7.5 Hz, 1H), 4.07 (s, 1H), 3.27–3.35 (s, 3H); ¹⁹F NMR (DMSO-d₆, 376MHz) δ - 61.08 (s, 3F); LCMS (ESI) calcd for (M–1)⁺ C₂₃H₁₈F₃NO₃S 444.46; found 444.42.

Compound 1x. 3-hydroxy-3-(2-(3-methoxyphenethoxy) phenyl)-1-methy lindolin-2-one was prepared according to the Method C. ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (dd, J = 8.0, 1.5 Hz, 1H), 7.21–7.39 (m, 4H), 7.03–7.17 (m, 3H), 6.78–6.88 (m, 3H), 6.65–6.77 (m, 2H), 4.11 (td, J = 9.0, 6.5 Hz, 1H), 3.88–3.99 (m, 1H), 3.81 (s, 3H), 3.38–3.52 (m, 1H), 3.25 (s, 3H), 2.79–2.89 (m, 1H), 2.71 (ddd, J = 14.0, 8.5, 6.0 Hz, 1H); LCMS (ESI) calcd for (M–18)⁺ C₂₃H₂₁NO₄ 372.45; found 372.20.

Compound 1y. 3-hydroxy-3-(2-(3-(3-methoxyphenyl)propoxy) phenyl)-1methylindolin-2-one was prepared according to the Method C. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.91 (dd, J = 1.8, 7.8 Hz, 1H), 7.26 (td, J = 7.7, 11.7 Hz, 1H), 7.26 (td, J = 7.9, 11.3 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.95–6.90 (m, 1H), 6.88–6.85 (m, 1H), 6.78–6.71 (m, 2H), 6.58–6.52 (m, 3H), 3.67–3.63 (m, 1H), 3.68 (s, 4H), 3.47 (td, J = 6.5, 9.2 Hz, 1H), 3.35 (s, 1H), 3.17 (s, 3H), 2.35–2.30 (m, 1H), 2.25–2.19 (m, 1H), 1.63–1.55 (m, 2H); HRMS m/z (ESI) calcd. for C₂₅H₂₅NO₄ [M+H]⁺ 404.1862; found 404.1837.

Compound 1z. 3-hydroxy-1-methyl-3-(2-(thiophen-3-ylmethoxy)phenyl) indolin-2-one was prepared according to the Method D. ¹H NMR (CD₃OD, 400 MHz) δ 7.97–8.02 (m, 2H), 7.28–7.38 (m, 5H), 6.88–7.16 (m, 10H), 6.76 (d, *J* = 8.0 Hz, 2H), 6.61–6.71 (m, 2H), 4.75–4.85 (m, 1H), 4.58–4.73 (m, 1H), 2.67–2.74 (m, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₃H₂₁NO₄ 352.42; found 352.40.

Compound 1aa. 5-chloro-3-hydroxy-1-methyl-3-(2-(thiophen-3-yl methoxy)phenyl)indolin-2-one was prepared according to the Method D. ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (d, J = 7.9 Hz, 1H), 7.21–7.36 (m, 4H), 6.99–7.14 (m, 3H), 6.88 (dd, J = 8.0, 1.0 Hz, 1H), 6.75 (dd, J = 5.0, 1.5 Hz, 1H), 6.53 (d, J = 8.0 Hz, 1H), 4.78–4.86 (m, 1H), 4.70–4.76 (m, 1H), 3.15 (s, 1H), 2.62–2.70 (m, 3H); LCMS (ESI) calcd for (M+2H)⁺ C₂₃H₂₁NO₄ 391.45, found 391.20.

Compound 5. 3-hydroxy-1-methyl-3-(2-((3-methylbenzyl) oxy)phenyl) indolin-2-one was prepared according to the Method C. ¹H NMR (DMSO-d₆, 400 MHz) δ 7.89 (dd, J = 1.7, 7.8 Hz, 1H), 7.31–7.23 (m, 2H), 7.20–6.97 (m, 4H), 6.95–6.88 (m, 2H), 6.83 (dd, J = 1.3, 7.2 Hz, 1H), 6.74–6.67 (m, 2H), 6.60 (s, 1H), 6.48 (s, 1H), 5.88 (s, 1H), 5.76 (s, 1H), 4.71–4.60 (m, 2H), 3.31–3.14 (m, 2H), 3.10 (s, 1H), 2.68 (s, 1H), 2.59 (s, 3H), 2.56–2.52 (m, 1H), 2.45–2.31 (m, 1H), 2.27 (s, 3H); LCMS (ESI) calcd for (M + H)⁺ C₂₃H₂₁NO₃ 360.43; found 360.50.

3. Crystal structure data and refinement details for compound-3f

CCDC deposition number	CCDC-2016549
Empirical formula	C ₂₃ H ₁₅ ClF ₃ NO ₃
Formula weight	445.81
Temperature/K	296.15
Crystal system	triclinic

Space group	P-1
a/Å	7.8400(4)
b/Å	11.8374(6)
c/Å	11.9176(6)
<u>α/°</u>	111.955(2)
β/°	97.653(2)
γ/°	98.734(2)
Volume/Å ³	991.91(9)
Ζ	2
$\rho_{calc}g/cm^3$	1.493
µ/mm ⁻¹	2.197
F(000)	456.0
Crystal size/mm ³	0.25 imes 0.15 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
20 range for data collection/°	8.18 to 130.38
Index ranges	$-9 \le h \le 9, -13 \le k \le 13, -14 \le l \le 14$
Reflections collected	28674
Independent reflections	$3296 [R_{int} = 0.0485, R_{sigma} = 0.0239]$
Data/restraints/parameters	3296/0/308
Goodness-of-fit on F ²	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0437, wR_2 = 0.1213$
Final R indexes [all data]	$R_1 = 0.0452, wR_2 = 0.1233$
Largest diff. peak/hole / e Å-3	0.30/-0.27

Experimental

Single crystals of Compound-3f {2-Chloro-8-methoxy-6'-(trifluoromethyl)-6H-spiro[dibenzo-[b,e]oxepine-11,3'-indolin]-2'-one} were obtained from methanol solution by solvent evaporation at room temperature. A suitable block shaped crystal was mounted on a nylon cryoloop using paratone oil. Data were collected on a Bruker SMART APEX-II diffractometer, equipped with Apex II area detector, at room temperature (~296 K). Initial structure solution was achieved with 'Intrinsic Phasing' method in Bruker APEX2 software suite. Using Olex2 [5], further structure refinements were performed with the ShelXL [6, 7] refinement package using Least Squares minimization.

ORTEP diagram of compound-3f with 50% probability ellipsoids (notice orientational disorder of the trifluoro methyl group; figure taken from checkCIF/PLATON report).

4. Cross over and control experiments

To support the derived mechanism, we have studied a cross over experiment by adding an equivalent of anisole to **1f** to see if the product **4f** is forming by intermolecular nucleophilic substitution. Interestingly, under the given reaction conditions, only the formation of **3f** was observed exclusively and not the product **4f**. This study clearly indicates that the intramolecular FC-Cyclization is preferred under this condition over intermolecular nucleophilic substitution, which supports our proposed plausible mechanism. In non-competitive environment, the nucleophilic substitution is also possible as explained in the potential application of the main manuscript.

In addition, we have performed the control experiment for the conversion **1f** to **3f** under standard reaction conditions by monitoring the reaction every 10 mins interval using ¹H-NMR, ¹⁹F-NMR and LCMS studies. Since the reaction temperature was –78 °C, we were not able to see the mass for the

possible intermediates/additives by LCMS/¹H-NMR, which normally operates at higher temperature. However, ¹⁹F-NMR studies in DCM show some interesting observations, which supports our plausible mechanism. The Signal at -127 ppm could be attributed to F⁻ from HF, liberated from DAST on interaction with free hydroxyl in the substrate. It clearly indicates the generation of HF during the course of the reaction and since DCM is a non-coordinating solvent, the HF forms strong hydrogen-bond with the carbonyl oxygen of the intermediate C, which in turn makes the adjacent carbon center highly electrophilic in nature. So, before the fluoride ion could attack this position the intramolecular Friedel Craft reaction precedes to form compound **3f**. After completion of the reaction (30 minutes), the signal at -127 ppm disappeared and a new peak appeared at -0.4 ppm [9] due to the formation of CFCl₃ from the interaction of F⁻ with the traces of CD₂Cl₂ in the NMR solvent, which is reported in the literature [10].

¹⁹F-NMR monitoring of the reaction (A) 10 mins (B) in 20 mins (C) in 30 mins

5. Spectral data for the final compounds (3a to 3aa).

¹H and ¹³C – NMR Data for 3a

¹H and ¹³C – NMR Data for 3b

¹H and ¹³C – NMR Data for 3c

¹H,¹³C & ¹⁹F-NMR Data for 3d

H,¹³C & ¹⁹ F- NMR Data for 3e.

-120.220

¹H,¹³C & ¹⁹ F-NMR Data for 3f

•	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm

-62.524

S29

¹H,¹³C & ¹⁹F-NMR Data for 3g

S30

¹H,¹³C & ¹⁹F-NMR Data for 3h

					1			
20	40	60	 100	120		160	100	

¹H,¹³C – NMR Data for 3j

¹H,¹³C – NMR Data for 3k

¹H,¹³C – NMR Data for 31

¹H,¹³C – NMR Data for 3m

¹H, ¹³C & ¹⁹ F- NMR Data for 3n

¹H,¹³C – NMR Data for 30

¹H,¹³C – NMR Data for 3p

¹H,¹³C – NMR Data for 3q

¹H,¹³C & ¹⁹F-NMR Data for 3r

¹H,¹³C & ¹⁹ F-NMR Data for 3s

-120,500

¹H,¹³C – NMR Data for 3t

¹H,¹³C – NMR Data for 3u

¹H,¹³C – NMR Data for 3v

¹H, ¹³C, ¹⁹F – NMR Data for 3w

¹H,¹³C – NMR Data for 3x

¹H,¹³C – NMR Data for 3y

¹H,¹³C – NMR Data for 3z

¹H,¹³C – NMR Data for 3aa

S76

<u>6. References</u>

- 1. B. M. Trost, Y. Zhang, J. Am. Chem. Soc., 2007, 129, 14548-14549.
- 2. P. Hewawasam, V. K. Gribkoff, Y. Pendri, S. I. Dworetsky, N. A. Meanwell, E. Martinez, C. G. Boissard, T. J. Post-Munson, J. T. Trojnacki, K. Yeleswaram, L. M. Pajor, J. Knipe, Q. Gao, R. Perrone, Jr. J. E. Starrett, *Bioorg. Med. Chem. Lett.* 2002, *12*, 1023-1026.
- 3. J. Wang, X. Xu, H. Phan, T. S. Herng, T. Y. Gopalakrishna, G. Li, J. Ding, J. Wu, Angew. Chem. Int. Ed. Engl. 2017, 56, 14154-14158.
- 4. P. Hewawasam, M. Erway, S. L. Moon, J. Knipe, H. Weiner, C. G. Boissard, D. J. Post-munson, Q. Gao, S. Huang, V. K. Gribkoff, N. A. Meanwell. J. Med. Chem. 2002, 45, 1487-1499.
- 5. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K., Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- 6. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- 7. Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
- 8. K. Schaumburg, C. Deverell., J. Am. Chem. Soc. 1968, 90, 2495-2499.
- 9. http://chemnmr.colorado.edu/manuals/19F NMR Reference Standards.pdf.
- 10. W. W. Dukat, J. H. Holloway, E. G. Hope, P. J. Townson, J. Fluor. Chem. 1993, 62, 293-296.