## Supporting Information

## Aggregation-Induced Phosphorescence of an Anthraquinone Based Emitter

Goudappagouda, ${ }^{\text {a,b }}$ Aakash Nidhankar, ${ }^{\text {a,b }}$ Rashmi A. Nayak, ${ }^{\text {a }}$ Sukumaran Santhosh Babu* ${ }^{\text {a,b }}$
a. Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
b. Academy of Scientific and Innovative Research (AcSIR), New Delhi-110020, India.

## Content

| 1. Experimental | Page S2 |
| :--- | :--- |
| 2. Synthesis | Page S4 |
| 3. Figures S1 to S25 | Page S8 |
| 4. Tables S1- S10 | Page S26 |
| 5. References | Page S34 |

## Experimental

## Materials

All chemicals, 2,6-Diaminoanthraquinone, hexanoyl chloride were purchased from commercial suppliers and used as such without further purification. Solvents such as N,Ndimethylformamide (DMF) were purified prior to use according to the standard protocol and stored in molecular sieves.
Thin-layer chromatography was carried out using Aluchrosep Silica Gel 60/UV 254 purchased from Merck Specialties Pvt. Ltd.
All the reactions were carried out in oven-dried round bottom flasks under argon atmosphere unless otherwise mentioned.

## General

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded at Bruker- 400 MHz NMR spectrometer instrument. The chemical shift values for ${ }^{1} \mathrm{H}$ (TMS as internal standard) and ${ }^{13} \mathrm{C}$ NMR are recorded in $\mathrm{CDCl}_{3}$. The value of coupling constant $(J)$ is stated in Hertz (Hz). MALDI-TOF MS spectrum was recorded using DHB (2,5-dihydroxybenzoic acid) as the inert matrix on AB SCIEX MALDI TOF/TOFTM 5800. UV-Vis absorption spectra were recorded with a Shimadzu 1800 spectrophotometer, while all emission spectra were performed using PTI Quanta Master ${ }^{\text {TM }}$ Steady State Spectrofluorometer. Fluorescence lifetimes were measured by time-correlated single photon counting (TCSPC), using a spectrofluorometer (Horiba scientific) and LED excitation source is 374 nm . The quality of the fit has been judged by fitting parameters such as $\chi^{2}(<1.2)$ as well as visual inspection of the residuals. Phosphorescence spectra were recorded using Fluorolog-3 HORIBA JOBIN VYON spectrophotometer. Phosphorescence lifetime using decay by delay method was measured on a Horiba QM400 fluorescence spectrometer. Absolute luminescence quantum yield was measured using a Quanta-Phi 6" model F-3029. Single crystal X-ray intensity data was collected on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized ( $\mathrm{Mo} \mathrm{K} \alpha=0.71073 \AA$ ) radiation at ambient temperature.

## Details of DFT calculations

Ground ( $\mathrm{S}_{0}$ ) state calculations were performed using restricted density functional theory (DFT). Singlet and triplet excited states were investigated using time-dependent density functional theory (TDDFT). ${ }^{\text {S1 }}$ The ground state singlet $\left(\mathrm{S}_{0}\right)$ state was calculated using B3LYP/6-31G(d) ${ }^{\text {S2 }}$ level of theory. Also the TDDFT calculations were done with same level of theory. All the geometries of the complexes in the $\mathrm{S}_{0}$ state were optimized. The optimized Cartesian coordinates and total energies are listed below. On the basis of the Frank-Condon principle, the absorption properties were evaluated using the optimized $\mathrm{S}_{0}$ state structure. The Gaussian09 software ${ }^{\mathrm{S} 3}$ was used in all the DFT and TDDFT calculations.

## Phosphorescence Experiments

All phosphorescence experiments were measured at room temperature ( 298 K ) in air by keeping the same experimental parameters. The window of maximum delay after flash for phosphorescence measurements was kept as 3 ms for $-196{ }^{\circ} \mathrm{C}$ and 0.3 ms for 298 K . The wavelength of excitation is $\lambda_{\mathrm{ex}}=374 \mathrm{~nm}$. Phosphorescence lifetimes were measured at room temperature ( 298 K ) in air by keeping $10 \%$ delay component and $10 \%$ trigger pulse duration, using 415 nm excitation source.

## Single crystals

A single crystal of AqC6 was grown in DMF. Single crystal X-Ray analysis and the same samples were used for all the characterization and optical measurements to get consistent results. Single crystal structure analysis shows that crystals of AqC6 (CCDC 2050268) belong to the Monoclinic $\mathrm{P}_{1} / \mathrm{c}$ (14) space group.

## Preparation of AqC6 PMMA film. ${ }^{\text {S4 }}$

Firstly, prepared a different weight percent of PMMA in $\mathrm{CHCl}_{3}(95 \%, 70 \%, 50 \%, 30 \%, 20 \%$, $10 \%$ and $5 \%$ ) and $100 \mu \mathrm{~L}$ of this solution is added to $100 \mu \mathrm{~L}$ of a solution of AqC6 in DMF having different weight percent ( $5 \%, 30 \%, 50 \%, 70 \%, 80 \%, 90 \%$ and $95 \%$ ). The use of chloroform improves morphology and gives more glassy nature to the film. $100 \mu \mathrm{~L}$ of this solution was drop-casting onto the cleaned quartz substrates, and kept for solvent evaporation on hot plate at $80^{\circ} \mathrm{C}$ for 10 min .

## Calculation of photophysical parameters

The photophysical parameters were calculated using the following equations.

$$
\begin{aligned}
& k_{r}^{\text {Phos }}=\phi_{\text {Phos }} / \tau_{\text {Phos }} \\
& k_{n r}^{\text {Phos }}=\left(1-\phi_{\text {Phos }}\right) / \tau_{\text {Phos }}
\end{aligned}
$$

Where,
$\varphi_{\text {Phos: }}$ : Phosphorescence quantum yield
$\tau_{\text {Fluo }}$ : Fluorescence lifetime
$\tau_{\text {Phos }}:$ Phosphorescence lifetime

## Synthesis



Scheme S1. Synthesis of N,N'-(9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)diheptanamide (AqC6). ${ }^{55}$

2,6-Diaminoantraquinone ( $1.0 \mathrm{~g}, 4.2 \mathrm{mmol}$ ), pyridine ( $4.5 \mathrm{~mL}, 50.33 \mathrm{mmol}$ ) were taken in an RB flask with dichloromethane ( 10 mL ). Hexanoyl chloride ( $2.93 \mathrm{~mL}, 20.99 \mathrm{mmol}$ ) was added to the reaction mixture in drop-wise, and the resulting mixture was stirred at $27{ }^{\circ} \mathrm{C}$ for 3 h , during which the color changed from red to yellow. The resulting mixture was filtered and washed with 1 M HCl , and then washed with diethyl ether. The yellow solid was digested in refluxing ether for 1 h , then filtered again, giving the title compound $(1.7 \mathrm{~g}, 93 \%)$ as a yellow powder.

${ }^{1} \mathbf{H}$ NMR ( 400 MHz , DMSO-d6), $\delta(\mathrm{TMS}, p p m): 10.53(\mathrm{~s}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=2.13 \mathrm{~Hz}, 2 \mathrm{H}), 8.13-$ $8.18(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{dd}, J=2.19,8.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.44 \mathrm{~Hz}, 4 \mathrm{H}), 1.63$ (quin, $J=7.32 \mathrm{~Hz}$, $4 \mathrm{H}), 1.28-1.35(\mathrm{~m}, 8 \mathrm{H}), 0.86-0.91(\mathrm{t}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ( 101 MHz , DMSO-d6), $\delta($ TMS, $p p m$ ):181.2, 172.2, 144.8, 134.2, 128.4, 127.7, 123.1, 115.6, 36.5, 30.8, 24.5, 21.9, 13.8

HR-MS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$434.2284, found 434.2274.



HR-MS spectra of $N, N^{\prime}$-(9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)diheptanamide (AqC6).
Page 1 of 1
Area \% Report


| VWD: Signal A, <br> 282 nm Results <br> Retention Time | Area | Area \% | Height | Height \% |
| :--- | :---: | :---: | :---: | :---: |
| 4.397 | 7426282 | 100.00 | 888051 | 100.00 |
| Totals | 7426282 | 100.00 | 888051 | 100.00 |


| Sample id: - ACQ |
| :---: |
| Mode: - RP-LC |
| Port: - D Pump |
| Flow rate: - $0.7 \mathrm{ml} / \mathrm{min}$ |
| Composition: - $\mathrm{MeOH}: \mathrm{H} 2 \mathrm{O}: \mathrm{DEA}(70: 30: 0.1)$ |
| Column: $-\underline{\operatorname{ShimPak}(250 \mathrm{~mm} * 4.6 \mathrm{~mm} * 5 \mathrm{uM})}$ |

HPLC profile of AqC6 ( $\mathrm{RT}=4.397$ ), in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ DEA (70:30:0.1) mixture by monitoring at 282 nm .


Figure S1. Emission lifetime decay profile of AqC6 a) solution in DMF ( $C=1 \times 10^{-5} \mathrm{M}, l=1$ $\left.\mathrm{cm}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=410 \mathrm{~nm}\right)$, b) crystals $\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}\right)$.


Figure S2. Phosphorescence images of AqC6 DMF solution in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K.


Figure S3. Comparison of the normalized steady-state emission of AqC6 in DMF solution and crystal state $\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}\right)$ at a) 298 K and b) 77 K .


Figure S4. Comparison of the normalized steady state emission of AqC6 in DMF and DMF: $\mathrm{H}_{2} \mathrm{O}$ (1:1) at two different concentrations a) $1 \times 10^{-5} \mathrm{M}$ and b) $5 \times 10^{-4} \mathrm{M}$ at $298 \mathrm{~K}\left(l=1 \mathrm{~cm}, \lambda_{\mathrm{ex}}=360\right.$ $\mathrm{nm})$ at 298 K .


Figure S5. Emission lifetime decay profile of AqC6 in DMF with increasing concentration ( $C=$ $1 \times 10^{-5} \mathrm{M}$ and $\left.5 \times 10^{-4} \mathrm{M}, l=1 \mathrm{~cm}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=500 \mathrm{~nm}\right)$ and DMF: $\mathrm{H}_{2} \mathrm{O}(1: 1)(C=1 \mathrm{x}$ $10^{-5} \mathrm{M}, l=1 \mathrm{~cm}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=500 \mathrm{~nm}$ ) at 298 K .


Figure S6. Concentration dependent a) absorption and b) excitation spectra of AqC6 in DMF at $298 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.


Figure S7. Phosphorescence lifetime decay profile of AqC6 in DMF and increasing content of $\mathrm{H}_{2} \mathrm{O}$, from $0-90 \%$, recorded at $298 \mathrm{~K}\left(C=1 \times 10^{-4} \mathrm{M}, \lambda_{\mathrm{ex}}=415 \mathrm{~nm}\right.$ and $\left.\lambda_{\text {mon }}=560 \mathrm{~nm}\right)$.


Figure S8. Comparison of the emission spectra of AqC6 in DMF solution $\left(1 \times 10^{-4} \mathrm{M}\right)$ before and after purging with oxygen at 298 K .


Figure S9. Phosphorescence lifetime decay profile of AqC6 in a) DMF solution ( $C=1 \times 10^{-4} \mathrm{M}$ ) and b) crystals at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}\right)$.
a)

c)





Figure S10. Crystal structure of AqC6 showing a) single molecule, b) dimer, c) unit cell and d) extended packing along b axis, hydrogen is omitted for clarity.


Figure S11. Crystal structure of AqC6 showing single molecule with bond angle $127.86^{\circ}$ between anthraquinone and amide planes.


Figure S12. Extended crystal packing of AqC6 along a axis, hydrogen is omitted for clarity.

3.65

Figure S13. HOMO-LUMO and energy bandgap of AqC6.

a) |  | Transitions (\%) |  |
| :--- | :--- | :--- |
| $\mathrm{T}_{4}$ | $\mathrm{H}-4 \rightarrow \mathrm{~L}\left(\mathrm{n}, \pi^{*} / \pi, \pi^{*}\right)$ | $(84)$ |
| $\mathrm{T}_{3}$ | $\mathrm{H}-1 \rightarrow \mathrm{~L}\left(\mathrm{n}, \pi^{*} / \pi, \pi^{*}\right)$ | $(76)$ |
| $\mathrm{T}_{2}$ | $\mathrm{H}-2 \rightarrow \mathrm{~L}\left(\mathrm{n}, \pi^{*}\right)$ | $(86)$ |
| $\mathrm{T}_{1}$ | $\mathrm{H} \rightarrow \mathrm{L}\left(\mathrm{n}, \mathrm{m}^{*} / \pi, \pi^{*}\right)$ | $(93)$ |

b)


HOMO-1 (115)



HOMO-3 (113)



HOMO-5 (111)




LUMO+1 (118)

Figure S14. DFT calculations of a) probable electronic transitions and b) involved frontier molecular orbitals.


Figure S15. Emission lifetime decay profile of AqC6 in DMF monitored at $410 \mathrm{~nm}\left(C=1 \times 10^{-4}\right.$ $\mathrm{M}, l=1 \mathrm{~cm}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}$ ) with varying amount of PMMA at 298 K .


Figure S16. Emission (excimer) lifetime decay profile of AqC6 monitored at 500 nm ( $\lambda_{\mathrm{ex}}=374$ nm ) with varying amount of PMMA at 298 K .


Figure S17. a) Steady-state emission of AqC6 $\left(C=1 \times 10^{-4} \mathrm{M}\right)$ with $5 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and b ) corresponding phosphorescence images of AqC6 in a quartz tube $(3 \mathrm{~mm})$ recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K. c) Steady-state emission of AqC6 ( $C=1 \times 10^{-4} \mathrm{M}$ ) with $10 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and d) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K .


Figure S18. a) Steady-state emission of AqC6 $\left(C=1 \times 10^{-4} \mathrm{M}\right)$ with $20 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and $\mathbf{b}$ ) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K. c) Steady-state emission of AqC6 ( $C=1 \times 10^{-4} \mathrm{M}$ ) with $30 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and d) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K .


Figure S19. a) Steady-state emission of AqC6 $\left(C=1 \times 10^{-4} \mathrm{M}\right)$ with $50 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and $\mathbf{b}$ ) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K. c) Steady-state emission of AqC6 ( $C=1 \times 10^{-4} \mathrm{M}$ ) with $70 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and d) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K .


Figure S20. a) Steady-state emission of AqC6 $\left(C=1 \times 10^{-4} \mathrm{M}\right)$ with $95 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$ and $\mathbf{b}$ ) corresponding phosphorescence images of AqC6 in a quartz tube ( 3 mm ) recorded at different time intervals upon turning off the excitation source ( 365 nm ) after 3 s exposure at 77 K .


Figure S21. Phosphorescence lifetime decay profile of AqC6 with a) $5 \%$, b) $10 \%$, c) $20 \%$ and d) $30 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.


Figure S22. Phosphorescence lifetime decay profile of AqC6 with a) $50 \%$, b) $70 \%$ and c) $95 \%$ of PMMA in DMF at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.


Figure S23. Steady-state emission of AqC6 thin-films with different percentage of PMMA polymer $\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}\right)$ at 77 K .


Figure S24. Phosphorescence lifetime decay profile of AqC6 thin-films with a) $5 \%$, b) $10 \%$, c) $20 \%$ and d) $30 \%$ of PMMA at $77 \mathrm{~K}\left(\lambda_{\text {ex }}=374 \mathrm{~nm}\right)$.


Figure S25. Phosphorescence lifetime decay profile of AqC6 thin-films with a) $50 \%$, b) $70 \%$ and c) $95 \%$ of PMMA at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}\right)$.

## Tables

Table S1. Fluorescence lifetime of AqC6 in DMF ( $C=1 \times 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=374 \mathrm{~nm}$, $\lambda_{\text {mon }}=410 \mathrm{~nm}$ ) and crystal state $\left(\lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}\right)$ at 298 K .

| Sample | Fluorescence lifetime (ns) | Contribution (\%) |
| :--- | :---: | :---: |
| AqC6 in DMF | $\tau_{1}=2.9$ | 56 |
| $\left(\lambda_{\text {mon }}=410 \mathrm{~nm}\right)$ | $\tau_{2}=0.5$ | 44 |
| AqC6 crystals | $\tau_{1}=4.5$ | 89 |
| $\left(\lambda_{\text {mon }}=560 \mathrm{~nm}\right)$ | $\tau_{2}=0.8$ | 11 |

Table S2. Fluorescence QY of AqC6 in DMF at different concentrations ( $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$ ).

| Sample | Concentration | QY (\%) |
| :---: | :---: | :---: |
| AqC6 in DMF | $1 \times 10^{-5} \mathrm{M}$ | 0.30 |
|  | $5 \times 10^{-5} \mathrm{M}$ | 0.33 |
|  | $1 \times 10^{-4} \mathrm{M}$ | 0.39 |

Table S3. Fluorescence lifetime of AqC6 in DMF with increasing concentration ( $C=1 \times 10^{-5} \mathrm{M}$ and $\left.5 \times 10^{-4} \mathrm{M}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}\right)$ and fluorescence lifetime of AqC6 in DMF: $\mathrm{H}_{2} \mathrm{O}(1: 1)\left(C=1 \times 10^{-}\right.$ ${ }^{5} \mathrm{M}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}$ ) monitored at 500 nm at 298 K .

| Sample | Fluorescence lifetime (ns) | Contribution (\%) |
| :--- | :--- | :---: |
| AqC6 in DMF <br> $\left(C=1 \times 10^{-5}\right)$ | $\tau_{1}=1.4$ | 87 |
|  | $\tau_{2}=0.3$ | 13 |
| AqC6 in DMF |  |  |
| $\left(C=5 \times 10^{-4}\right)$ | $\tau_{1}=26.1$ | 69 |
|  | $\tau_{2}=2.7$ | 20 |
| AqC6 in DMF: $\mathrm{H}_{2} \mathrm{O}(1: 1)$ | $\tau_{3}=0.8$ | 11 |
| $\left(C=1 \times 10^{-5} \mathrm{M}\right)$ | $\tau_{1}=31.3$ | 64 |
|  | $\tau_{2}=5.3$ | 24 |
|  | $\tau_{3}=0.5$ | 12 |

Table S4. Phosphorescence lifetime of AqC6 in DMF at different \% of water content ( $\lambda_{\mathrm{ex}}=415$ $\mathrm{nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}$ ) at 298 K .

| DMF:H2O <br> ratio | Phosphorescence <br> lifetime (ms) | Contribution (\%) |
| :---: | :---: | :---: |
| $100: 0$ | - | - |
| $90: 10$ | $\tau_{1}=0.3$ | 100 |
| $80: 20$ | $\tau_{1}=0.5$ | 53 |
|  | $\tau_{2}=0.1$ | 47 |
| $70: 30$ | $\tau_{1}=0.6$ | 62 |
|  | $\tau_{2}=0.1$ | 38 |
| $60: 40$ | $\tau_{1}=1.1$ | 76 |
| $50: 50$ | $\tau_{2}=0.1$ | 24 |
| $40: 60$ | $\tau_{1}=2.9$ | 70 |
|  | $\tau_{2}=0.1$ | 30 |
| $30: 70$ | $\tau_{1}=3.1$ | 62 |
|  | $\tau_{2}=0.6$ | 38 |
| $20: 80$ | $\tau_{2}=3.6$ | 62 |
|  | $\tau_{1}=4.0$ | 38 |
| $10: 90$ | $\tau_{2}=0.3$ | 52 |
|  | $\tau_{1}=5.5$ | 48 |
|  | $\tau_{2}=0.4$ | 54 |

Table S5. Phosphorescence lifetime and related photophysical parameters of AqC6 crystals ( $\lambda_{\mathrm{ex}}$ $=415 \mathrm{~nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}$ ) at 298 K .

| Molecule | Quantum yield <br> $(\%)$ | Lifetime <br> $(\mathrm{ms})$ | $\boldsymbol{K}_{\mathbf{n r}}($ Phos $)$ <br> $\left(\mathrm{s}^{-1}\right)$ | $\boldsymbol{K}_{\mathbf{r}}($ Phos $)$ <br> $\left(\mathrm{s}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| AqC6 crystal | 4.0 | 9.0 | 106.6 | 0.44 |

Table S6. Crystal data and structure refinement parameters of AqC6.

|  | AqC6 |
| :--- | :--- |
| Molecular formula | $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ |
| Crystal system | Monoclinic |
| Space group | $\mathrm{P} 2{ }_{1} / \mathrm{c}(14)$ |
| $\mathbf{a}, \AA$ | $5.2406(7)$ |
| $\mathbf{b}, \AA$ | $6.5334(8)$ |
| $\mathbf{c}, \AA$ | $31.137(4)$ |
| $\boldsymbol{\alpha}, \mathbf{d e g}$ | 90 |
| $\boldsymbol{\beta}, \mathbf{d e g}$ | 91.691 |
| $\gamma, \mathbf{d e g}$ | 90 |
| $\mathbf{V}, \AA \AA^{\mathbf{3}}$ | 1065.63 |
| $\mathbf{Z}, \mathbf{Z}$, | 2,0 |

Table S7. $\pi-\pi^{*}$ Excitation properties of AqC6 calculated at the TD-B3LYP/6-31G(d) level.

|  | $\Delta \boldsymbol{E}(\mathbf{e V})$ | $\lambda(\mathbf{n m})$ | $\mathbf{f}$ | Configuration <br> (orbital symmetry) | Coefficient |
| :--- | :--- | :--- | :--- | :--- | :--- |
| S0-S1 | 3.0027 | 412.91 | 0.0000 | HOMO-2 (114) - LUMO (117) | 0.67691 |
| S0-S2 | 3.0926 | 400.91 | 0.0000 | HOMO (116) - LUMO (117) | 0.69645 |
| S0-S3 | 3.2687 | 379.31 | 0.0000 | HOMO-4 (112) - LUMO (117) | 0.66870 |
| S0-S4 | 3.4768 | 356.60 | 0.2733 | HOMO-1 (115) - LUMO (117) | 0.66667 |
| S0-S5 | 3.9162 | 316.59 | 0.0000 | HOMO-3 (113) - LUMO (117) | 0.65646 |
| S0-S6 | 4.0624 | 305.20 | 0.0000 | HOMO-6 (110) - LUMO (117) | 0.67541 |
| S0-S7 | 4.0644 | 305.05 | 0.0000 | HOMO-5 (111) - LUMO(117) | 0.68425 |
| S0-S8 | 4.1457 | 299.07 | 0.1485 | HOMO-7 (109) - LUMO(117) | 0.53715 |
| S0-S9 | 4.4314 | 279.79 | 0.8682 | HOMO (116) - LUMO+1 (118) | 0.57529 |
| S0-S10 | 4.4759 | 494.97 | 277.00 | HOMO-2 (114) - LUMO+1 (118) | 0.67545 |


|  | $\Delta \boldsymbol{E}(\mathbf{e V})$ | $\lambda(\mathbf{n m})$ | $\mathbf{f}$ | Configuration <br> (orbital symmetry) | Coefficient |
| :--- | :--- | :--- | :--- | :--- | :--- |
| S0-T1 | 2.4815 | 499.63 | 0.0000 | HOMO (116) - LUMO (117) | 0.68086 |
| S0- T2 | 2.5745 | 481.59 | 0.0000 | HOMO-2 (114) -LUMO (117) | 0.65612 |
| S0- T3 | 2.6036 | 476.20 | 0.0000 | HOMO-1(115) - LUMO (117) | 0.61505 |
| S0- T4 | 2.8200 | 439.66 | 0.0000 | HOMO-4(112) - LUMO (117) | 0.64819 |
| S0-T5 | 3.1569 | 392.74 | 0.0000 | HOMO-3 (113) - LUMO (117) | 0.65758 |
| S0- T6 | 3.2740 | 378.69 | 0.0000 | HOMO-7 (109) - LUMO (117) | 0.53745 |
| S0-T7 | 3.6334 | 341.24 | 0.0000 | HOMO (116) - LUMO+1 (118) | 0.58676 |
| S0-T8 | 3.6841 | 336.54 | 0.0000 | HOMO-1(115) - LUMO+1 (118) | 0.57315 |
| S0-T9 | 3.9697 | 312.33 | 0.0000 | HOMO-6(110) - LUMO (117) | 0.63812 |
| S0-T10 | 3.9790 | 311.60 | 0.0000 | HOMO-5(111) - LUMO (117) | 0.65439 |

Optimized Cartesian coordinates of different complexes ( $\mathrm{S}_{0}$ state) at the B3LYP/6-31G(d) level of theory.

## Coordinates of Optimized Structure

| O | 0.649245794 | -2.630304631 | -0.000268993 |
| :--- | :---: | :---: | :---: |
| O | 6.334086885 | 1.638641458 | -0.000128157 |
| N | 5.082671116 | -0.289720283 | -0.001047237 |
| H | 5.168447266 | -1.298278605 | -0.001263200 |
| C | 12.613771914 | -0.724177001 | 0.001096430 |
| H | 12.629729360 | -1.373252268 | 0.885371832 |
| H | 13.539638474 | -0.138024240 | 0.001994858 |
| H | 12.630516723 | -1.371786712 | -0.884236646 |
| C | 11.378794772 | 0.182229251 | 0.001301050 |
| H | 11.407945877 | 0.843495925 | -0.876052629 |
| H | 11.407220798 | 0.842112401 | 0.879719346 |
| C | 10.057789179 | -0.597998539 | 0.000139978 |
| H | 10.028999397 | -1.260821825 | 0.878270474 |
| H | 10.029680554 | -1.259369530 | -0.879108559 |
| C | 8.821469356 | 0.309078973 | 0.000418539 |
| H | 8.840151642 | 0.969699587 | 0.875596790 |
| H | 8.840856082 | 0.971243631 | -0.873572396 |
| C | 7.510588406 | -0.479812114 | -0.000826676 |
| H | 7.463175289 | -1.140794630 | -0.879124042 |
| H | 7.462432112 | -1.142382707 | 0.876228358 |
| C | 6.274152111 | 0.419555288 | -0.000604666 |
| C | 3.763474717 | 0.187064024 | -0.000764593 |
| C | 2.735908418 | -0.767167277 | -0.000591885 |


| H | 2.955112860 | -1.831817137 | -0.000616229 |
| :--- | :---: | ---: | :---: |
| C | 1.400157777 | -0.378135658 | -0.000382579 |
| C | 0.346700828 | -1.440104865 | -0.000222168 |
| C | 1.066010253 | 0.990974735 | -0.000315428 |
| C | 3.433877525 | 1.557557391 | -0.000715318 |
| H | 4.225625042 | 2.293069327 | -0.000808496 |
| C | 2.097742087 | 1.937912280 | -0.000478879 |
| H | 1.828706612 | 2.989282681 | -0.000426557 |
| O | -0.649248588 | 2.630350670 | -0.000007061 |
| O | -6.334046350 | -1.638630467 | -0.000195730 |
| N | -5.082674747 | 0.289753842 | 0.000772330 |
| H | -5.168464343 | 1.298311012 | 0.001049449 |
| C | -12.613786890 | 0.724053693 | 0.000010112 |
| H | -12.630007972 | 1.372876065 | -0.884446084 |
| H | -13.539640643 | 0.137880290 | -0.000459202 |
| H | -12.630296162 | 1.371915884 | 0.885162907 |
| C | -11.378789586 | -0.182325328 | -0.000283075 |
| H | -11.407687533 | -0.843350401 | 0.877261259 |
| H | -11.407439454 | -0.842451096 | -0.878511424 |
| C | -10.057801350 | 0.597932513 | 0.000302409 |
| H | -10.029245729 | 1.260484983 | -0.878040324 |
| H | -10.029487828 | 1.259575412 | 0.879339465 |
| C | -8.821462107 | -0.309118540 | -0.000001299 |
| H | -8.840365376 | -0.970054829 | -0.874934102 |
| H | -8.840599696 | -0.970968236 | 0.874236000 |
| C | -7.510597349 | 0.479799485 | 0.000591946 |
| H | -7.462944303 | 1.14114041 | 0.878624102 |
| H | -7.462707443 | 1.142039308 | -0.876729579 |
| C | -6.274142056 | -0.419542885 | 0.000302257 |
| C | -3.763475834 | -0.187019849 | 0.000448246 |
| C | -2.73591112 | 0.767213151 | 0.000295715 |
| H | -2.955116389 | 1.831862858 | 0.000350949 |
| C | -1.400160407 | 0.378181778 | 0.000077138 |
| C | -0.346703361 | 1.440151004 | -0.000076625 |
| C | -1.066012820 | -0.990928813 | -0.000004742 |
| C | -3.433879393 | -1.557512427 | 0.000368422 |
| H | -4.225627873 | -2.293023722 | 0.000453400 |
| C | -2.097744183 | -1.937867126 | 0.000135055 |
| H | -1.828708501 | -2.989237479 | 0.000077985 |
|  |  |  |  |

Table S8. Thin-film fluorescence lifetime (excimer) of AqC6 ( $\lambda_{\text {ex }}=374 \mathrm{~nm}, \lambda_{\text {mon }}=500 \mathrm{~nm}$ ) with different percentage of PMMA at 298 K .

| AqC6:PMMA ratio (\%) | Fluorescence lifetime (ns) | Contribution (\%) |
| :---: | :---: | :---: |
| 5:95 | $\begin{aligned} & \tau_{1}=31.8 \\ & \tau_{2}=2.9 \\ & \tau_{3}=0.2 \end{aligned}$ | $\begin{aligned} & 64 \\ & 23 \\ & 13 \end{aligned}$ |
| 10:90 | $\begin{aligned} & \tau_{1}=25.9 \\ & \tau_{2}=1.6 \\ & \tau_{3}=0.1 \end{aligned}$ | $\begin{aligned} & 58 \\ & 28 \\ & 14 \end{aligned}$ |
| 20:80 | $\begin{aligned} & \tau_{1}=20.3 \\ & \tau_{2}=2.8 \\ & \tau_{3}=0.1 \end{aligned}$ | $\begin{aligned} & 57 \\ & 31 \\ & 12 \end{aligned}$ |
| 30:70 | $\begin{aligned} & \tau_{1}=17.1 \\ & \tau_{2}=2.5 \\ & \tau_{3}=0.1 \end{aligned}$ | $\begin{aligned} & 53 \\ & 29 \\ & 18 \end{aligned}$ |
| 50:50 | $\begin{aligned} & \tau_{1}=14.0 \\ & \tau_{2}=1.7 \\ & \tau_{3}=0.2 \end{aligned}$ | $\begin{aligned} & 47 \\ & 35 \\ & 18 \end{aligned}$ |
| 70:30 | $\begin{aligned} & \tau_{1}=7.2 \\ & \tau_{2}=1.5 \\ & \tau_{3}=0.4 \end{aligned}$ | $\begin{aligned} & 44 \\ & 41 \\ & 15 \end{aligned}$ |
| 95:5 | $\begin{aligned} & \tau_{1}=2.9 \\ & \tau_{2}=5.5 \\ & \tau_{3}=0.1 \end{aligned}$ | $\begin{aligned} & 61 \\ & 23 \\ & 16 \end{aligned}$ |

Table S9. Thin-film fluorescence lifetime of AqC6 with different percentage of PMMA polymer ( $\lambda_{\mathrm{ex}}=374 \mathrm{~nm}, \lambda_{\text {mon }}=560 \mathrm{~nm}$ ) at 298 K .

| AqC6:PMMA ratio (\%) | Fluorescence lifetime (ns) | Contribution (\%) |
| :---: | :--- | :--- |
| $95: 5$ | $\tau_{1}=0.5$ | 62 |
|  | $\tau_{2}=3.0$ | 38 |
|  | $\tau_{1}=0.4$ | 6 |
|  | $\tau_{2}=3.9$ | 14 |
|  | $\tau_{3}=7.9$ | 80 |
| $70: 30$ | $\tau_{1}=0.5$ | 16 |
|  | $\tau_{2}=4.4$ | 23 |
|  | $\tau_{3}=13.1$ | 61 |
| $50: 50$ | $\tau_{1}=0.3$ | 2 |
|  | $\tau_{2}=3.2$ | 29 |
| $30: 70$ | $\tau_{3}=16.0$ | 29 |
|  | $\tau_{1}=0.2$ | 30 |
|  | $\tau_{2}=4.7$ | 68 |
| $5: 95$ | $\tau_{3}=21.9$ | 5 |
|  | $\tau_{1}=0.3$ | 30 |
|  | $\tau_{2}=3.8$ | 65 |
|  | $\tau_{3}=25.4$ | 7 |
|  | $\tau_{1}=0.4$ | 31 |
|  | $\tau_{2}=6.6$ | 62 |
|  | $\tau_{3}=39.1$ |  |

Table S10. Summary of the fluorescence and phosphorescence of molecule AqC6 with PMMA at 298 K .

| $\begin{gathered} \text { AqC6:PMMA } \\ \text { ratio (\%) } \end{gathered}$ | $\lambda_{\text {max, fluo }}$ (nm) | $\begin{gathered} \lambda_{\text {max, phos }} \\ (\mathrm{nm}) \end{gathered}$ | $\tau_{\text {phos }}$ <br> (ms) | Contribution (\%) | $\phi_{\text {phos }}$ <br> (\%) | $\underset{\left(\mathrm{s}^{-1}\right)}{\mathbf{K}_{\mathbf{n r}} \text { (Phos) }}$ | $\begin{gathered} \mathbf{K}_{\mathbf{r}} \mathbf{( \text { Phos } )} \\ \left(\mathrm{s}^{-1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95:5 | 560 | 560 | $\tau_{1}=106.1$ | 62 | 3.7 | 9.05 | 0.41 |
|  |  |  | $\tau_{2}=31.7$ | 38 |  |  |  |
| 90:10 | 560 | 560 | $\tau_{1}=126.4$ | 88 | 3.9 | 7.6 | 0.31 |
|  |  |  | $\tau_{2}=11.0$ | 12 |  |  |  |
| 80:20 | 560 | 560 | $\tau_{1}=161.7$ | 69 | 4.2 | 5.9 | 0.25 |
|  |  |  | $\tau_{2}=43.6$ | 29 |  |  |  |
|  |  |  | $\tau_{3}=10.3$ | 2 |  |  |  |
| 70:30 | 560 | 560 | $\tau_{1}=168.4$ | 66 | 4.6 | 5.6 | 0.27 |
|  |  |  | $\tau_{2}=50.7$ | 31 |  |  |  |
|  |  |  | $\tau_{3}=14.4$ | 3 |  |  |  |
| 50:50 | 560 | 560 | $\tau_{1}=174.2$ | 68 | 5.1 | 5.4 | 0.29 |
|  |  |  | $\tau_{2}=56.5$ | 31 |  |  |  |
|  |  |  | $\tau_{3}=18.2$ | 1 |  |  |  |
| 30:70 | 560 | 560 | $\tau_{1}=171.8$ | 67 | 5.7 | 5.4 | 0.33 |
|  |  |  | $\tau_{2}=53.9$ | 31 |  |  |  |
|  |  |  | $\tau_{3}=16.0$ | 2 |  |  |  |
| 5:95 | 560 | 560 | $\tau_{1}=164.2$ | 69 | 5.5 | 5.7 | 0.33 |
|  |  |  | $\tau_{2}=48.8$ | 29 |  |  |  |
|  |  |  | $\tau_{3}=13.8$ | 2 |  |  |  |

Red marked phosphorescence lifetime is used for the $K_{n r}\left(\right.$ phos ) and $K_{r}$ (phos) calculation

## References

S1. J. P. Stephens, J. J. Pan, F. J. Devlin, J. R. Cheeseman, J. Natural Prod. 2008, 71, 285.
S2. J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory and Comput. 2008, 4, 297.
S3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, S27 N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford CT, 2009.

S4. M. Louis, H. Thomas, M. Gmelch, A. Haft, F. Fries and S. Reineke, Adv. Mater. 2019, 31, 1807887.

S5. R. Kantam, R. Holland, B. P. Khanna, K. D. Revell, Tetrahedron Lett.2011, 52, 5083.

