SUPPORTING INFORMATION

FOR

Revisiting the Synthesis of Aryl Nitriles: A pivotal role of CAN

Rakhee Saikia,^a Kwihwan Park,^b Hayato Masuda,^b Miki Itoh,^b Tsuyoshi Yamada,^b Hironao Sajiki,^b Sanjeev P Mahanta, Ashim J Thakur,^a Utpal Bora^{a*}

^aDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, Pin-784028

^bLaboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

E-mail: utbora@yahoo.co.in, ubora@tezu.ernet.in

CONTENTS

S. No.

Page No.

1	XPS analysis of the reaction mixture	S2
2	Picrate paper test	S2
3	Experimental procedures for controlled reactions	S2-S4
4	Copies of ¹ H and ¹³ C NMR spectra of the aryl nitrile derivatives	S5-S29

1. XPS ANALYSIS OF THE REACTION MIXTURE

Figure 1 XPS spectra of (a) CAN before use and (b) crude mixture after cyanation reaction.

2. PICRATE PAPER TEST

Picrate paper is prepared by dipping a filter paper in a 0.5% w/v solution of moist picric acid in 2.5% w/v NaHCO₃, allowing the paper to dry in air and then cutting to the required strip size.

A picrate paper strip was inserted into the reaction flask under reflux conditions in a pre-heated oil bath at 130 °C, containing CAN, Cu(OTf)₂, K₂CO₃ and DMF. The colour of the picrate paper strip changed from yellow to red. This indicates the generation of CN^{-} in the reaction medium.

3. EXPERIMENTAL PROCEDURE FOR CONTROLLED REACTIONS

All the reactions were carried out in a 50 ml round-bottomed flask with a magnetic stirring bead fitted to a condenser (filled with water) and stirred at 130 °C in a pre-heated oil bath under reflux conditions for 24 hours.

Entry	Experimental Procedure	Remarks
1	CAN (1.5 equiv., 0.4117 g), 4-Iodoanisole (1a, 0.5	
	mmol. 0.117 g) and K_2CO_3 (1 equiv., 0.068 g) were	The cvanated product. 3 <i>a</i> was not
	taken in 2 mL DMF. After 24 h, TLC of the	observed in the developed TLC of the
	reaction was developed in 20% ethyl acetate/hexane	reaction mixture.
	system.	
2	Pd(OAc) ₂ (30 mol%, 0.15 mmol, 0.034 g), CAN	The reaction mixture was extracted in
	(1.5 equiv., 0.75 mmol, 0.411 g), 4-Iodoanisole (1a,	ethyl acetate, dried over anhydrous
	0.5 mmol, 0.117 g) and K_2CO_3 (1 equiv., 0.068 g)	Na_2SO_4 and concentrated in a rotary
	were taken in 2 mL DMF. After 24 h, TLC of the	evaporator. The product was purified
	reaction was developed in 20% ethyl acetate/hexane	through column chromatography and
	system.	isolated in 50% yield
3	Ni(OAc) ₂ ·4H ₂ O (30 mol%, 0.15 mmol, 0.039 g),	The reaction mixture was extracted in
	CAN (1.5 equiv., 0.75 mmol, 0.411 g), 4-	ethyl acetate, dried over anhydrous
	Iodoanisole (1a, 0.5 mmol, 0.117 g) and K_2CO_3 (1	Na ₂ SO ₄ and concentrated in a rotary
	equiv., 0.068 g) were taken in 2 mL DMF. After 24	evaporator. The product was purified
	h, TLC of the reaction was developed in 20% ethyl	through column chromatography and
	acetate/hexane system.	isolated in 35% yield
	$C_{-}(OTE) = (20 - m_{2})(0.15 - m_{2})(0.054 - c)$	
4	$Cu(O11)_2$ (30 mol%, 0.15 mmol, 0.054 g),	The cyanated product was not observed in
	CeC_{13}/H_2O (1.5 equiv., 0.75 mmol, 0.411 g), 4-	the developed TLC of the reaction
	Indoanisole (1a, 0.5 mmol, 0.117 g) and K_2CO_3 (1	mixture.
	b TLC of the reaction was developed in 20% athul	
	n, The of the reaction was developed in 20% emyr	
	acetate/nexane system.	
5	Cu(OTf) ₂ (30 mol%, 0.15 mmol, 0.054 g),	The reaction mixture was extracted in
	NH ₄ (SO ₄) ₂ (1.5 equiv., 0.75 mmol, 0.098 g), 4-	ethyl acetate, dried over anhydrous
	Iodoanisole (1a, 0.5 mmol, 0.117 g) and K_2CO_3 (1	Na_2SO_4 and concentrated in a rotary
	equiv., 0.068 g) were taken in 2 mL DMF. After 24	evaporator. The product was purified
	h, TLC of the reaction was developed in 20% ethyl	through column chromatography and
	acetate/hexane system.	isolated in 55% yield.

6	Cu(OTf) ₂ (30 mol%, 0.15 mmol, 0.054 g), 4-	The cyanated product was not observed in	
	Iodoanisole (1a, 0.5 mmol, 0.117 g) and K_2CO_3 (1	the developed TLC of the reaction	
	equiv., 0.068 g) were taken in 2 mL DMF. After 24	mixture.	
	h, TLC of the reaction was developed in 20% ethyl		
	acetate/hexane system.		
7	Cu(OTf) ₂ (30 mol%, 0.15 mmol, 0.054 g), CAN	The reaction mixture was extracted in	
	(1.5 equiv., 0.4117 g), 4-Iodoanisole (1a, 0.5 mmol,	ethyl acetate, dried over anhydrous	
	0.117 g) and K_2CO_3 (1 equiv., 0.068 g) were taken	Na ₂ SO ₄ and concentrated in a rotary	
	in 2 mL DMF and stirred under nitrogen	evaporator. The product was purified	
	atmosphere. After 24 h, TLC of the reaction was	through column chromatography and	
	developed in 20% ethyl acetate/hexane system.	isolated in 85% yield.	
8	Cu(OTf) ₂ (30 mol%, 0.15 mmol, 0.054 g), CAN	The cyanated product was not observed in	
	(1.5 equiv., 0.4117 g), 4-Iodoanisole (1a, 0.5 mmol,	the developed TLC of the reaction	
	0.117 g) and KCl (1 equiv., 0.037 g) were taken in 2	mixture.	
	mL DMF. After 24 h, TLC of the reaction was		
	developed in 20% ethyl acetate/hexane system.		

4. Copies of ¹H and ¹³C NMR spectra of the aryl nitrile derivatives

{

S23

