Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Uncatalyzed diastereoselective synthesis of alkyliminofurochromone-derived

benzylmalononitriles via a three-component cascade reaction: Competition

between Diels-Alder cycloaddition and Michael addition

Mohammad BagherTeimouri,*a Zahra Mokhtare,a Hamid Reza Khavasi^b

^a Faculty of Chemistry, Kharazmi University, Mofateh Ave., Tehran, Iran ^b Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, Evin, Tehran, Iran

Table of Contents:

List of contents	Page	List of contents	Page
FT-IR of 4a	S 3	¹ H NMR of 4 j	S19
¹ H NMR of $4a$	S3	¹³ C NMR of 4 j	S19
13 C NMR of 4a	S4	HRMS of 4j	S20
HRMS of 4a	S4	FT-IR of 4k	S20
FT-IR of 4b	S5	¹ H NMR of 4 k	S21
¹ H NMR of 4b	S5	¹³ C NMR of 4 k	S21
¹³ C NMR of 4b	S6	HRMS of 4k	S22
FT-IR of 4c	S6	FT-IR of 4 I	S22
¹ H NMR of 4 c	S7	¹ H NMR of 4 I	S23
13 C NMR of 4 c	S7	¹³ C NMR of 4 I	S23
FT-IR of 4d	S8	FT-IR of 4m	S24
¹ H NMR of $4d$	S8	¹ H NMR of 4m	S24
13 C NMR of 4d	S9	¹³ C NMR of 4m	S25
FT-IR of 4e	S9	FT-IR of 4n	S25
¹ H NMR of 4 e	S10	¹ H NMR of 4n	S26
¹³ C NMR of 4e	S10	¹³ C NMR of 4n	S26
HRMS of 4e	S11	HRMS of 4n	S27
FT-IR of 4f	S11	FT-IR of 4o	S27
¹ H NMR of 4f	S12	¹ H NMR of 40	S28
¹³ C NMR of 4 f	S12	¹³ C NMR of 40	S28
HRMS of 4f	S13	HRMS of 40	S29
FT-IR of 4g	S13	FT-IR of 4p	S29
¹ H NMR of 4 g	S14	¹ H NMR of 4 p	S30
13 C NMR of 4g	S14	¹³ C NMR of 4 p	S30
HRMS of 4g	S15	FT-IR of 4 q	S31
FT-IR of 4h	S15	¹ H NMR of 4 q	S31
¹ H NMR of 4h	S16	¹³ C NMR of 4 q	S32
¹³ C NMR of 4h	S16	FT-IR of 4 r	S32
FT-IR of 4i	S17	¹ H NMR of 4 r	S33
¹ H NMR of 4i	S17	¹³ C NMR of 4r	S33
¹³ C NMR of 4i	S18	Single crystal structure of 4p	S34
FT-IR of 4 j	S18	Description of the crystal structure of 4p	S36

¹³C NMR (75 MHz, CDCl₃) of 4a:

HRMS of 4a

FT-IR of 4b:

¹³C NMR (75 MHz, CDCl₃) of 4b:

¹H NMR (300 MHz, CDCl₃) of 4c:

¹³C NMR (75 MHz, CDCl₃) of 4d:

¹H NMR (300 MHz, CDCl₃) of 4e:

¹³C NMR (75 MHz, CDCl₃) of 4e:

HRMS of 4e:

¹H NMR (300 MHz, CDCl₃) of 4f:

HRMS of 4f:

¹H NMR (300 MHz, CDCl₃) of 4g:

¹³C NMR (75 MHz, CDCl₃) of 4g:

S14

HRMS of 4g:

¹H NMR (300 MHz, CDCl₃) of 4h:

¹³C NMR (75 MHz, CDCl₃) of 4i:

¹H NMR (300 MHz, CDCl₃) of 4j:

¹³C NMR (75 MHz, CDCl₃) of 4j:

HRMS of 4j:

Sample: ZM-70

¹H NMR (300 MHz, CDCl₃) of 4k:

¹³C NMR (75 MHz, CDCl₃) of 4k:

HRMS of 4k:

¹H NMR (300 MHz, CDCl₃) of 4l:

FT-IR of 4m:

¹³C NMR (75 MHz, CDCl₃) of 4m:

¹H NMR (300 MHz, CDCl₃) of 4n:

HRMS of 4n:

Ms. Mokhtare

Sample: ZM-94

¹H NMR (300 MHz, CDCl₃) of 40:

HRMS of 4o:

¹H NMR (300 MHz, CDCl₃) of 4p:

mokhtare ZM-107

FT-IR of 4q:

¹H NMR (300 MHz, CDCl₃) of 4q:

¹³C NMR (75 MHz, CDCl₃) of 4q:

¹H NMR (300 MHz, CDCl₃) of 4r:

¹³C NMR (75 MHz, CDCl₃) of 4r:

Single crystal structure of **4p**:

The yellow plate shape crystals of compound **4p** were obtained from methanol after 4 days. In order to have strong document about the molecular structure of product, the crystals of compound **4p** were also studied by single crystal X-ray diffraction studies. A suitable single crystal of **4p** was selected and mounted on a glass fiber. The X-ray diffraction data collection was done on a STOE IPDS-II diffractometer with graphite-monochromated Mo-K α radiation at room temperature. Diffraction data were collected in a series of ω scans in 1° oscillations and integrated using the Stoe X-AREA [1] software package. A numerical absorption correction was applied using X-RED [2] and X-SHAPE [3] software. The data were corrected for Lorentz and polarizing effects. The structures were solved by direct methods [4] and subsequent difference Fourier maps and then refined on F^2 by a full-matrix least-squares procedure using anisotropic displacement parameters [5]. All refinements were performed using the X-STEP32 crystallographic software package [6]. The data collection and refinement processes are summarized in Table 1.

Compound	4p
Net formula	$\underline{C_{27}H_{21}BrClN_3O_3}$
$Mw/g \text{ mol}^{-1}$	550.82
Crystal size/mm	$\underline{0.45} \times \underline{0.15} \times \underline{0.05}$
T/K	298
Radiation	Μο Κα
Diffractometer	STOE IPDS 2T
Crystal system	Triclinic
Crystal shape, color	Plate, yellow
space group	P-1
a/Å	8.8254(15)
b/Å	9.1172(14)
c/Å	16.392(2)
$\alpha/^{o}$	94.438(12)
$\beta/^{o}$	90.270(13)
$\gamma^{\prime o}$	111.705(13)
$V/Å^3$	1221.0(3)
Ζ	2
calc. density/g cm ^{-3}	1.498
μ/mm^{-1}	1.83
F(000)	560
θ range/°	2.4–27.0
h	$-11 \rightarrow 11$
k	$-11 \rightarrow 10$

Table 1. Crystal data and structure refinement parameters for compound 4p.

l	-20→20
$R_{\rm int}$	0.151
$R[F^2 > 2\sigma(F^2)]$	0.069
$wR(F^2)$	0.165
S	0.82
Measured reflections	11405
Independent reflections	5326
Reflections with $I > 2\sigma(I)$	2009
Parameters	316
$\Delta \rho_{min}$ and $\Delta \rho_{max}$ / e Å ⁻³	-0.51 and 0.70

The structural data have been deposited at the Cambridge Crystallographic Data Center (CCDC No 2049904). These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures.

Description of the crystal structure **4p**:

The plate yellow crystals of compound **4p** were studied by single crystal X-ray diffraction analysis. Structural studies indicated this compound is crystallized in triclinic crystal system. The molecular structure of compound **4p** is shown in Fig. 1 and the selected bond lengths and angles are collected in Table 2. As it is shown in Fig. 1, the structure of compound **4p** the desired compound is successfully synthesized. (Please write some details about the spectroscopic properties of the compound and their agreement with the crystal structure). The N3-C22 and N3-C21 bond lengths are 1.487(6) and 1.246(6) Å which are in agreement with double and single carbon-nitrogen bond lengths, respectively. The C9–N1 (1.109(7) Å) and C10–N2 (1.108(7) Å) bonds are considerably shorter than these bonds which confirm the presence of C=N bond in malononitrile unit.

The crystal structure of compound **4p** is stabilized by several CHO and CHN intermolecular hydrogen bond interactions (see Fig. 2a). The oxygen atoms of ketone functionality and chromene ring involve with C–H···O interactions with the hydrogen atoms of the neighboring molecules (see green dashed lines in Fig. 2a). The nitrogen atoms of the malononitrile functionality also form intermolecular C–H···N hydrogen bond interactions with the phenyl rings (see pink dashed lines in Fig. 2a and Fig. 3). The strong C–H··· π and π ··· π interactions between the aromatic and heterocylic rings of the compound further stabilize the crystal packing of compound **1** (see Fig. 2b).

Fig. 2. Molecular structure of compound 4p with atom labeling scheme.

Bond	Length/Å	Bond	Angle/°
C3-Br1	1.893(5)	C6–C7–C8	113.0(4)
C16–Cl1	1.717(5)	C6–C7–C11	109.8(4)
C9-N1	1.109(7)	C8–C7–C11	116.0(4)
C10-N2	1.108(7)	C21-N3-C22	117.8(4)
C22–N3	1.487(6)	C21-01-C11	110.5(4)
C21–N3	1.246(6)	C20–O3–C19	115.8(4)
C11-01	1.453(6)	N1-C9-C8	178.4(8)
C13–O2	1.227(6)	N2-C10-C8	178.7(7)
C19–O3	1.374(6)	N3-C21-O1	124.4(5)
C20–O3	1.336(5)	N3-C21-C20	129.7(5)
C21–O1	1.392(6)	N3-C22-C23	109.2(4)
C6–C7	1.529(7)	01–C11–C12	104.1(4)
С7–С8	1.536(7)	01–C11–C7	109.5(4)
C7–C11	1.548(7)	01–C21–C20	105.9(4)
C8–C9	1.466(8)	02–C13–C12	125.0(5)
C8–C10	1.470(8)	O2-C13-C14	122.9(5)
C11–C12	1.505(6)	O3–C20–C12	126.6(4)
		O3–C20–C21	121.7(4)
		O3–C19–C14	122.7(4)
		O3–C19–C18	115.9(5)

 Table 2. Selected bond lengths and angles in the crystal structure of compound 4p.

Fig. 2. a) Intermolecular C–H…O (green dashed lines) and C–H…N (pink dashed lines) interactions; b) C– H… π (green dashed lines) and π … π (pink dashed lines) interactions in the crystal structure of **4p**.

Fig. 3. Intermolecular C–H…N interactions in the crystal structure of **4p** shown as pink dashed lines.

References:

[1] X-AREA: Program for the Acquisition and Analysis of Data, version 1.30, Darmstadt, Germany, 2005.

[2] X-RED: Program for Data Reduction and Absorption Correction, version 1.28b, Darmstadt, Germany, 2005.

[3] X-SHAPE: Program for Crystal Optimization for Numerical Absorption Correction, version 2.05, Darmstadt, Germany, 2004.

[4] Sheldrick, G. M. SHELX97; Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.

[5] Sheldrick, G. M. SHELX97; Program for Crystal Structure Refinement, University of Göttingen: Göttingen, Germany, 1997.

[6] X-STEP32: Crystallographic Package, version 1.07b, Darmstadt, Germany, 2000.