Genome mining of cryptic tetronate natural products from a PKS-NRPS encoding gene cluster in *Trichoderma harzianum* t-22

Yiguang Zhu,^{‡a,b} Junfeng Wang,^{‡a,b} Pengyun Mou,^b Yan Yan,^{a,b} Mengbin Chen,^a Yi Tang^{*a}

^aDepartment of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA. E-mail: yitang@ucla.edu

^bKey Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

‡These authors contribute equally to this work.

Table of Contents

Supplemental Materials and Methods	3
General DNA manipulation techniques	3
Sequence analysis	3
A. nidulans protoplast preparation and transformation	3
Table S1. Deduced functions of individual orfs in the thn gene cluster	5
Table S2. ¹ H and ¹³ C NMR Data for 1-3 (500, 125 MHz, CD ₃ OD, TMS, δ ppm)	6
Table S3. ¹ H and ¹³ C NMR Data for 4-6 (500, 125 MHz, TMS, δ ppm)	7
Table S4. Strains and plasmids used and generated in this study	8
Table S5. Primers used in this study	.10
Figure S1. Selected PKS-NRPS gene clusters in T. harzianum t-22	.12
Figure S2. thn cluster is highly conserved in several Trichoderma spp	.13
Figure S3. Amino acid alignment of ThnA-A with A domains of reported PKS-NRPS	
genes	.14
Figure S4. HPLC analysis of extracts from A. nidulans transformant containing differen	t
combinations of <i>thn</i> genes	.15
Figure S5. The spectroscopic data of 1	.16
Figure S6. The spectroscopic data of 2	.23
Figure S7. The spectroscopic data of 3	.30
Figure S8. The spectroscopic data of 4	.36
Figure S9. The spectroscopic data of 5	.42
Figure S10. The spectroscopic data of 6	.48
Figure S11. Bioinformatic analysis of ThnC amino acid sequences.	.54
Figure S12. SDS-PAGE analysis of purified ThnC	.55
Figure S13. HPLC analysis of in vitro assays of ThnC with substrate 1	.56
References	.57

Supplemental Materials and Methods

General DNA manipulation techniques

All DNA manipulations in this study were conducted according to manufacturers' protocols. DNA restriction enzymes were used as recommended by the manufacturer (New England Biolabs, NEB). PCR was performed according to recommended protocol using Q5 High-Fidelity DNA polymerase (NEB). Genomic DNA extraction was carried out following the instructions of Zymo Quick-DNA Fungal/Bacterial Miniprep Kit. Plasmids were confirmed by restriction enzyme digestion analysis and sequencing.

The RNA extractions were performed using RiboPureTM Yeast RNA Isolation Kit (Ambion) following the manufacturer's instructions. Residual genomic DNA in the extracts was digested by DNase I (2 U/ μ L) (Invitrogen) at 37°C for 4 hours. SuperScript III First-Strand Synthesis System (Invitrogen) was used for cDNA synthesis with Oligo-dT primers following instructions from the user manual.

Sequence analysis

The *orfs* were determined using the 2ndfind program(http://biosyn.nih.go.jp/2ndfind/). Protein sequences were compared with BLAST programs (http://blast.ncbi.nlm.nih.gov/ Blast.cgi).

A. nidulans protoplast preparation and transformation

A. nidulans A1145 Δ ST Δ EM was grown on CD agar plates containing supplements (10 mM uridine, 5mM uracil, 0.5 µg/mL pyridoxine HCl and 2.5 µg/mL riboflavin) at 30°C for 5 days. Fresh spores were inoculated into 50 mL liquid CD media containing supplements in 250 mL flask and germinated at 30°C, 250 rpm for approximately 16 h. Mycelia were harvested by centrifugation at 3,500 rpm for 10 min, and washed with 10 mL osmotic buffer (1.2 M MgSO₄, 10 mM sodium phosphate, pH 5.8). Then the mycelia were transferred into 30 mL of osmotic buffer containing 100 mg lysing enzymes from *Trichoderma* and 60 mg Yatalase in a 250 mL flask and were shaken at 80 rpm for 4 h at 30°C. Cells were collected

in a 30 mL Corex tube and overlaid gently with 10 mL of trapping buffer (0.6 M sorbitol, 0.1 M Tris-HCI, pH 7.0). After centrifugation at 3,500 rpm for 15 min at 4°C, protoplasts were collected from the interface of the two buffers. The protoplasts were then transferred to a sterile 15 mL falcon tube and washed by 10 mL STC buffer (1.2 M sorbitol, 10 mMCaCl₂, 10 mM Tris-HCI, pH 7.5). The protoplasts were then resuspended in 1 mL STC buffer and 60 µL aliquots of the protoplasts were stored in -80°C for transformation.

The plasmids extracted from *E. coli* were added to 60 μ L *A. nidulans* A1145 protoplast suspension and the mixture was incubated on ice for 60 min. After that, 600 μ L of PEG solution (60% PEG, 50 mMCaCl₂ and 50 mM Tris-HCl, pH 7.5) was added to the protoplast mixture, followed by additional incubation at room temperature for 20 min. The mixture was spread on the regeneration medium (CD solid medium with 1.2 M sorbitol and appropriate supplements including 10 mM uridine, 5 mM uracil and/or 0.5 μ g/mL pyridoxine HCl and/or 2.5 μ g/mL riboflavin depending on the plasmids being transformed) and incubated at 30°C for 2-3 days until single colony appear.

Gene	Size	Proposed protein	Homolog	Homolog Organism
name	(aa)	function	(identity)	
thaA	4044	PKS-NRPS synthetase	CcsA (40%)	Aspergillus clavatus NRRL 1
thaB	563	Transporter	GsfJ (49%)	Penicillium aethiopicum
thaC	321	2-oxoglutarate-dependent	TropC (38%)	Talaromyces stipitatus ATCC
		dioxygenase		10500
thaD	406	FAD-dependent	CctM (27%)	Trichophyton benhamiae
		monooxygenase		CBS 112371
thaE	369	Trans-enoyl reductase	FSL5 (44%)	Fusarium graminearum PH-1

Table S1. Deduced functions of individual orfs in the thn gene cluster

С	c 1		2		3	
_	$\delta_{\rm C}$	δ_{H} (<i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{H}~(J \text{ in } Hz)$	$\delta_{ m C}$	δ_{H} (<i>J</i> in Hz)
1	n.d.ª		n.d.ª		n.d.ª	
2	98.9 ^b , C		99.1 ^b , C		95.9 ^b , C	
3	193.6, C		193.5, C		196.1, C	
4	78.2, CH	4.97, m	78.1, CH	5.00, m	78.3, CH	4.67, m
5	36.9, CH ₂	2.99, dd (17.0, 3.7);	36.7, CH ₂	3.00, dd (17.1, 3.5);	38.5, CH ₂	2.90, dd (16.5, 3.3);
		2.74, dd (17.0, 7.1)		2.77, dd (17.1, 6.8)		2.46, dd (16.5, 9.0)
6	172.7, C		172.6, C		174.5, C	
1'	191.6, C		191.1, C		196.0, C	
2'	134.1, C		133.7, C		137.0, C	
3'	147.3, CH	6.84, t (6.8)	148.0, CH	6.91, t (6.8)	138.6, CH	6.12, t (6.6)
4'	30.2, CH ₂	2.39, m	30.2, CH ₂	2.40, m	29.5, CH ₂	2.24, m; 2.21, m
5'	32.3, CH ₂	2.26, m	32.3, CH ₂	2.30, m; 2.25, m	32.6, CH ₂	2.20, m; 2.03, m
6'	131.6, CH	5.62, m	131.9, CH	5.64, m	133.3, CH	5.65, m
7'	132.9, CH	6.06, dd (14.9, 10.3)	132.8, CH	6.04, m	132.1, CH	6.01, m
8'	130.1, CH	5.97, dd (14.9, 10.3)	130.3, CH	6.00, m	130.5, CH	6.04, m
9'	139.5, CH	5.44, dd (15.0, 7.9)	139.1, CH	5.45, dd (14.8, 8.1)	137.0, CH	5.51, m
10'	39.8, CH	2.03, m	34.6, CH	2.27, m	34.8, CH	2.64, m
11'	30.9, CH ₂	1.32, m	40.7, CH ₂	1.52, m	42.7, CH ₂	2.26, m
12'	12.2, CH₃	0.86, t (7.4)	61.1, CH ₂	3.54, m	176.5, C	
13'	12.2, CH₃	1.88, s	12.1, CH₃	1.89, s	12.9, CH₃	1.80, s
14'	20.7, CH₃	0.98, d (6.8)	21.1, CH₃	1.01, d (6.8)	20.5, CH₃	1.05, d (6.8)

Table S2. ¹H and ¹³C NMR Data for 1-3 (500, 125 MHz, CD₃OD, TMS, δ ppm).

^a Signals not detected from HMBC correlations; ^bSignals acquired from ¹³C NMR spectrum.

No.	. 4 ª		5 ^b		6 °	
_	δ _C	δ_{H} (<i>J</i> in Hz)	$\delta_{\rm C}$	δ_{H} (<i>J</i> in Hz)	δ _C	$\delta_{H}~(J ext{ in } Hz)$
1	n.d. ^d		n.d. ^d		n.d. ^d	
2	93.6 ^e , C		n.d. ^d		96.9 ^e , C	
3	n.d. ^d		n.d. ^d		182.1, C	
4	154.5, C		148.1, C		155.6, C	
5	85.3, CH ₂	4.70, s;	96.5, CH ₂	5.44, d (2.5);	89.0, CH ₂	5.04, d (1.6);
		4.46, s		5.26, s		7.71, d, (1.5)
1'	191.7, C		192.7, C		195.7, C	
2'	136.8, C		150.2, C		138.0, C	
3'	134.7, CH	5.90, m	132.8, CH	overlap	139.3, CH	6.15, t (6.0)
4'	28.0, CH ₂	2.14, m	29.7, CH ₂	2.43, m	29.7, CH ₂	2.28, m
5'	31.4, CH ₂	2.14, m; 1.23, m	31.2, CH ₂	2.30, m	32.7, CH ₂	2.21, m
6'	131.6, CH	5.63, m	130.9, CH	5.62, m	133.3, CH	5.67, m
7'	130.7, CH	6.02, m	131.5, CH	6.04, m	132.1, CH	6.03, m
8'	128.7, CH	5.95, m	129.0, CH	6.01, m	130.6, CH	6.03, m
9'	138.0, CH	5.45, dd (15.1, 7.4)	138.5, CH	5.49, dd (14.2, 8.1)	137.0, CH	5.51, m
10'	37.7, CH	2.01, m	34.0, CH	2.31, m	34.8, CH	2.64, m
11'	29.3, CH ₂	1.23, m	39.9, CH ₂	1.57, m	42.6, CH ₂	2.25, m
12'	11.7, CH₃	0.80, t (6.3)	61.4, CH ₂	3.65, m	176.4, C	
13'	12.9, CH₃	1.69, s	12.2, CH₃	1.92, s	12.8, CH₃	1.81, s
14'	20.0, CH₃	0.94, d (6.5)	20.9, CH₃	1.02, d (6.7)	20.5, CH₃	1.06, d (6.8)

Table S3. ¹H and ¹³C NMR Data for **4-6** (500, 125 MHz, TMS, δ ppm).

^aMeasured in DMSO-*d*₆; ^bMeasured in CDCl₃; ^cMeasured in CD₃OD; ^dSignals not detected from HMBC correlations; ^eSignals acquired from ¹³C NMR spectrum.

Table S4. Strains and	plasmids used and	generated in this study	ļ
-----------------------	-------------------	-------------------------	---

Strains/Plasmids	Characteristics	Sources
E. coli		
TOP10	Host strain for cloning	Invitrogen
BL21(DE3)	Host strain for protein expression	Novagen
Fungi		
S. cerevisiae BJ5464-NpgA	Host for in vivo homologous recombination to construct A. nidulans plasmids	1
T. harzianum t-22	Wild type	2
A. nidulans A1145 ΔSTΔEM	Host strain for heterologous expression	3
ZYG001	A. nidulans A1145 containing plasmid pYTU, pYTP and pYTR	This study
ZYG002	A. nidulans A1145 containing plasmid pZYG001	This study
ZYG003	A. nidulans A1145 containing plasmid pZYG001 and pZYG002	This study
ZYG004	A. nidulans A1145 containing plasmid pZYG001 and pZYG003	This study
ZYG005	A. nidulans A1145 containing plasmid pZYG001, pZYG002 and pZYG003	This study
ZYG006	A. nidulans A1145 containing plasmid pZYG001, pZYG002 and pZYG004	This study
ZYG007	A. nidulans A1145 containing plasmid pZYG005	This study
Plasmids		

pET28b	Km ^R , expression vector	Novagen
pYTU	Heterologous expression vector in A. nidulans A1145	1
рҮТР	Heterologous expression vector in <i>A. nidulans</i> A1145	1
pYTR	Heterologous expression vector in <i>A. nidulans</i> A1145	1
pZYG001	pYTP containing glaA- <i>thnA</i> and gpdA- <i>thnE</i>	This study
pZYG002	pYTU containing glaA- <i>thnC</i>	This study
pZYG003	pYTR containing gpdA-thnD	This study
pZYG004	PYTR containing gpdA- <i>thnD</i> and glaA- <i>thnB</i>	This study
pZYG005	pYTP containing glaA- <i>thnA</i>	This study
pZYG105	pET28b containing 960bp <i>thnC</i> fragment	This study

Primers	Plasmids	Sequences
TH22-22AE-1	_	CCTCGCGGGTGTTCTTGACGATGGCATCCTCCTGATCTTCCGAACTGGTCGTACCTGGCG
TH22-22AE-2		TGCGATCGGCTCCAGGTTTTGGGATCCCATTGCTGAGGTGTAATGATGCTGGGGATGAAG
TH22-22AE-3		CTTCATCCCCAGCATCATTACACCTCAGCAATGGGATCCCAAAACCTGGAGCCGATCGCA
TH22-22AE-4		GGCCGCATAGTTGGCCTGGCCGAGGTTACCAACAACGCACGC
TH22-22AE-5	n7VC001	GTCTTGTTCTCGTCAGCCGCGTGCGTTGTTGGTAACCTCGGCCAGGCCAACTATGCGGCC
TH22-22AE-6	pzroou	CTCCCGTCACCCAAATCAATTCACCGGAGTCCGGTCTTGCGACAGTGTGACCAATCACAC
TH22-22AE-7		GTGTGATTGGTCACACTGTCGCAAGACCGGACTCCGGTGAATTGATTTGGGTGACGGGAG
TH22-22AE-8		AACTGCCCCATCGTAGTAGCGGACGACATTGTTTAGATGTGTCTATGTGGCGGGGTAATG
TH22-22AE-9	-	CATTACCCCGCCACATAGACAATCTAAACAATGTCGTCCGCTACTACGATGGGGCAGTT
TH22-22AE-10		AAGCTTGATATCGAATTCCTGCAGCCCGGGCGTTAAAAGGTGTCCAAGTAGAGCAACGGC
TH22-22C-1	pZYG002	CTTCATCCCCAGCATCATTACACCTCAGCAATGTCGGAAGAAGATATCTCGTTGCCCATC
TH22-22C-2		AGTGGAGGACATACCCGTAATTTTCTGGGCCGCAACTTGCGTGCCTAGGCATGTGATTGG
TH22-22D-1	pZYG003	ATTACCCCGCCACATAGACACATCTAAACAATGCACGTTCTTATTGCAGGAGCCGGGCT
TH22-22D-2		TAAAGGGTATCATCGAAAGGGAGTCATCCAGCTATGGGCCTAGGGCAATATTCTACAGTC
TH22-22BD-1		ATTACCCCGCCACATAGACACTCTAAACAATGCACGTTCTTATTGCAGGAGCCGGGCT
TH22-22BD-2		CGCCAGGTACGACCAGTTCGGAAGATCAGGGCTATGGGCCTAGGGCAATATTCTACAGTC
TH22-22BD-3	~7VC004	GACTGTAGAATATTGCCCTAGGCCCATAGCCCTGATCTTCCGAACTGGTCGTACCTGGCG
TH22-22BD-4	pz16004	TCTCGTGGCACTGTAGTCTCCGCTCATTGCTGAGGTGTAATGATGCTGGGGATGAAG
TH22-22BD-5		CTTCATCCCCAGCATCATTACACCTCAGCAATGAGCGGAGACTACAGTGCCACGAGA
TH22-22BD-6]	TAAAGGGTATCATCGAAAGGGAGTCATCCAGAAGCAATATCACGTAGCATGCAT
TH22-22A-1	DZVC00E	CCTCGCGGGTGTTCTTGACGATGGCATCCTCCTGATCTTCCGAACTGGTCGTACCTGGCG
TH22-22A-2	pZYG005	TGCGATCGGCTCCAGGTTTTGGGATCCCATTGCTGAGGTGTAATGATGCTGGGGATGAAG

Table S5. Primers used in this study

TH22-22A-3		CTTCATCCCCAGCATCATTACACCTCAGCAATGGGATCCCAAAACCTGGAGCCGATCGCA
TH22-22A-4		GGCCGCATAGTTGGCCTGGCCGAGGTTACCAACAACGCACGC
TH22-22A-5		GTCTTGTTCTCGTCAGCCGCGTGCGTTGTTGGTAACCTCGGCCAGGCCAACTATGCGGCC
TH22-22A-6		GATGAGACCCAACAACCATGATACCAGGGGCCGGTCTTGCGACAGTGTGACCAATCAC
ThnC-EF	p7VC105	TTTTGTTTAACTTTAAGAAGGAGATATACCATGTCGGAAGAAGATATCTCGTTGCCCATC
ThnC-ER	μ210105	GATCTCAGTGGTGGTGGTGGTGGAGCTCTCCAACCTGAGCAAG

Figure S1. Selected PKS-NRPS gene clusters in T. harzianum t-22

PKS-NRPS: polyketide synthase and nonribosomal peptide synthetase; ER: trans enoyl reductase; TP: transporter; TR: transcriptional regulator; α-KG: α-ketoglutarate-dependent dioxygenase; FMO: flavin-dependent monooxygenase; DR: dehydrogenase, OX: oxygenase; AT: acetyltransferase; AH: alpha/beta hydrolase; AL: aldolase; AMT: aminotransferase; MT: methyltransferase.

Figure S2. thn cluster is highly conserved in several Trichoderma spp.

Caaà-àNRDRIALKDG-HGRILTYAVMINRIEAIAEELOKSGVOEGHRVLVFEDATADWPCSMLAIMRLGAVYVPLDLRNPLPRLADVAANCEPAAILVDNTTAKDIDOVNVTOAKVVNVSHASVKPNKRVPNVSRGD	131
	135
ThDA-A - DOVARENEDKVALMDG-TGKALTVASMINE HSIARALORAGUGPGLEVLVPOOATSDWPCSMLAIMELGAIVVPLDLENPLPELAAVAODCEPTAILADASTL-DEASOLGVPSAELDVSLVKTNPSKEVSNDSRAH	137
	123
	140
	145
	145
	140
TERS-ALCQDHSTASAIRDGRNELSIAQLASKVNHTASALVNAGCSVGSRIAVLCNPSLDAIVAMLAILHIGGVVPLDTSLPEARHQDLASNTPSLTISHAAIRLSAVISAPGHEPARBLILDDLSPDETGIMAPLNABPN	142
CPAA-A FQDMVDQYGDRIAITDQGRDFSYLQLQAQATRIGEALLQRGVRSGDTVAVLCPPSMNSVASMLAILRISAVVPLDLSLPAARHKAMILASPVRALVCVSSTVEKVLELGVSTILNSEIPDIRAPSTRFTNSAKGD	137
${\tt Fusa-a} = {\tt LQQAPLGFDMSLT} = {\tt QMTLAIMLGGTLIVASSETRKDPMQLAQLMLAEKVTHTFMTPTLALSVIHHGYEYLRQCVNWEHASLAGEAMTTRVTREFKRLGLRNLELLNGYGPTEITIIATCGSNELGDTLRDT = HNP$	133
. П	
$\tt CaaA-A ~AVAAILYTSGSTGKPKGIVVKHSGLRNEIEGYTTQWGLRAE-RALQQSAFTFNHSSDQIYTGLTNGGTVYIVPWSKRGDPIEVSQIIQEEGITYTKATPAEYALWLDYGNANLRKATNWRFGFGGGGESLTPALLHQLAALGLPHLRFF$	278
TraA-A AVAALLYTSGSTGKPKGIVVTHSGLRNEIEGYTSQWVLKAE-RVLQQSAFTFMESSDQIYTGLVNGGFVYIVPWDKRGDPIEVTKIIKEENITYTKATPAEYSLWLDYGSGNLKQASSWRFAFGGGESLTGTITRSLATLQLPNLRFF	282
ThnA-A STAAILYTSGSTGTPKGIMVTHEGLRNEIEGYTKTWKLGPE-RVLQQSAFTFMHSSDQIYTGLVNGGMVYVVPWDKRGNALEITKIIQEQGITYTKATPSEYSLWMLYGRESLRLATSWRCAFGGGESLTTTVTQQFADLDLPQLHFF	284
Pvha+a dvavvlftsgstgvpkgmrmthanlvfstdsisgafnvtqesmvlqqspfsfppslcqtlvaltngaalvvvpsrsrgdpmavtkimaeekvtftvgtpseyamlleygadnirqchawkcaawggeqmphglakqlaaanlpglkah	271
Posa-a~glamilytsgstgspkgipltnanirtpilgvservplgre-vvlqqsqqgfdavvqifialanggtlimvdnrddpakvaalmaqesvtctthivsemqallkygydelrncsswriamvageaftvhlldqfralnrpdlkvi	285
Pks3-a SdShilftSgStgvPkgirlhqrgimSwtiawSkqFgFepi-tvlqStSigFpLSFlqiytalanggmLvaapyeSrgdpeafSkLihddniqftmctpSeygllLtyapermrqctnwrfagSggellpdrivdglralklphLkvt	292
Myca-a eaavifftsgttgvpkgaivphrgitnfmehtcdirgpevvlfhsalgfdlamwqcfsglahggtlvvaprsmrgdpvaitglmakekitctgatpseyhtwiqygfsklaqstswriamtggeqctpklvddfrslrlpglrlw	291
TenS-A APAILLYTSGSTGTPKGVLLTQANFGNHIALKTDILGLQRGECVLQQSSLGFDMSLVQVFCALANGGCLVIVPQDVRRDPMELTSLMAQHKVSLTIATPSEYLAWLQYGSDALAQATSWKHLCMGGEPIPQLLKDELRRLERKDLVVVS	292
C_{paa-a} slaillytsgstgqpkgvClpqsgfinylaakrkelgldsstvvlqqsslgfpmglaqtlnaimnggklvivpqelrgdsieiariirdqkvtftlatpseylvmlqhgreylhnyagwrhaclggepftdqlkrefvrlgkncpvvq	285
Fusa-A SIGRALPNYSCYILDENMOPVRPGLAGELVIGGAGVAIGULNRODLTEVKFLRDPFSPAEDIARGWTRMYRTGDKARFLSDGRLCFLGRIAGDSOIKLRGFRIELEDIASTIVRASDGKIPEAAVSLRGEGDSAYLVAFVIL	275
CaaA-A NSYGPTEISISSTKMEIAYREKQPEGRIPCGYSLPNYAAYILD-EQQKPLPVGMPGELWIGGAGVSLGYLNNPELTDYHFYPDPYATTEYLAQGWTRMYRTGDIAHLQADGAMVFHSRVAGDAQVKIRGLRI 409	
TraA-A NSYGPTEISISSTKMEVAYRDSPPDGRIPCGFMLPNYAAYILD-DORKPVPVGMPGELYIGGAGVSLGYLDNEELTEOHFLPNPYAIPEVVAOGWTRMYRTGDIAHLOGDGAMVFHNRIAGDTOVKI 408	
ThnA-A NSYGPTEISISSTKMEIPYRDREA-LERVGRIPCGYSLPGYYMYAVD-EELRPLPAGMPGOLCIGGTGVSLGYLKNOELTDKHFLPNPFATEEDIANGWTRMYLTGDIGHMNODGTMVFHSRMAGDTOVKI 413	
Pyha-a NVYGPSETTMLSHFHLVNPAEIEGNGYIPVGAGFDGYKYCIVD-HOMRVOPIGVPGEIIIGGPAVVAGYLNNOOLTDTKFLADSFFGTNGKVYRSGDLGRMLEDGTLVVEGRLDGDDLIKLRGFRIELE- 399	
POSA-A NAYGPTEASICSSLGEVSENRISSSETSIPIGKAIPNYGTYIVD-OHCKPVPLGWPGEVAIAGPGVASGYLNLGELTOAKFRSAATLGEVFGSDCLYLTGDRGRMLSDGSIVLSGRVDGDDOVKIR 410	
$\pi_{\text{pn}} = 1$ M_{product} $M_{$	
rab-r sörnerspensinkänsepperinkinkeritstönennyskanöinnörinstöritelöprinkalelinkeleinelsekönintasukpiiikpenia	

Conserved amino acid residues for A domain recognition active sites were labeled in red box. CaaA (EHA18001), TraA (QBK15049), PvhA (AZZ09613), PsoA (ABS87601), Pks3 (AAS46233), MycA (G2Q9A5), TenS (EJP63694), CpaA (BAG82673), FusA (AFP73394).

Figure S4. HPLC analysis of extracts from *A. nidulans* transformant containing different combinations of *thn* genes.

In the presence of the FAD-dependent monooxygenase *thnD with thnACE*, no detectable metabolite is produced. Each transformant was cultured on CDST agar at 28°C for 3 days before extraction of metabolites.

Figure S5. The spectroscopic data of 1

(A) The HRESIMS spectrum of 1

Figure S5. The spectroscopic data of 1

(B) The ¹H-NMR spectrum of **1** (500 MHz for ¹H NMR in CD₃OD)

Figure S5. The spectroscopic data of 1

(C) The¹³C NMR spectrum of compound **1** in CD₃OD (125 MHz)

Figure S5. The spectroscopic data of 1

Figure S5. The spectroscopic data of **1** (E) The HMBC spectrum of **1** (500 MHz for ¹H NMR in CD₃OD)

Figure S5. The spectroscopic data of **1** (F) The ¹H-¹H COSY spectrum of **1** (500 MHz for ¹H NMR in CD₃OD)

Figure S5. The spectroscopic data of **1** (G) The NOESY spectrum of **1** (500 MHz for ¹H NMR in CD₃OD)

Figure S6. The spectroscopic data of 2

(A) The HRESIMS spectrum of 2

Figure S6. The spectroscopic data of 2

(B) The ¹H-NMR spectrum of **2** (500 MHz for ¹H NMR in CD₃OD)

Figure S6. The spectroscopic data of 2

(C) The¹³C NMR spectrum of compound **2** in CD₃OD (125 MHz)

Figure S6. The spectroscopic data of **2** (D) The HSQC spectrum of compound **2** in CD₃OD (125 MHz)

Figure S6. The spectroscopic data of **2** (E) The HMBC spectrum of **2** (500 MHz for 1H NMR in CD₃OD)

Figure S7. The spectroscopic data of 3

(A) The HRESIMS spectrum of 3

Figure S7. The spectroscopic data of 3

(C) The¹³C NMR spectrum of compound **3** in CD₃OD (125 MHz)

Figure S8. The spectroscopic data of 4

(A) The HRESIMS spectrum of 4

Figure S8. The spectroscopic data of 4

(B) The ¹H-NMR spectrum of **4** (500 MHz for ¹H NMR in DMSO-*d*₆)

Figure S8. The spectroscopic data of 4

(C) The¹³C NMR spectrum of compound **4** in DMSO- d_6 (125 MHz)

Figure S8. The spectroscopic data of **4** (D) The HSQC spectrum of compound **4** in DMSO-*d*₆ (125 MHz)

Figure S8. The spectroscopic data of **4** (E) The HMBC spectrum of **4** (500 MHz for ¹H NMR in DMSO-*d*₆)

Figure S8. The spectroscopic data of **4** (F) The ¹H-¹H COSY spectrum of 4 (500 MHz for ¹H NMR in DMSO-*d*₆)

Figure S9. The spectroscopic data of 5

(A) The HRESIMS spectrum of 5

Figure S9. The spectroscopic data of 5

(B) The ¹H-NMR spectrum of **5** (500 MHz for ¹H NMR in CDCl₃)

Figure S9. The spectroscopic data of 5

(C) The¹³C NMR spectrum of compound **5** in CDCl₃ (125 MHz)

Figure S9. The spectroscopic data of **5** (D) The HSQC spectrum of compound **5** in CDCl₃ (125 MHz)

Figure S9. The spectroscopic data of **5** (E) The HMBC spectrum of **5** (500 MHz for ¹H NMR in CDCl₃)

Figure S9. The spectroscopic data of **5** (F) The ¹H-¹H COSY spectrum of **5** (500 MHz for ¹H NMR in CDCl₃)

Figure S10. The spectroscopic data of 6

Figure S10. The spectroscopic data of 6

(B) The ¹H-NMR spectrum of **6** (500 MHz for 1H NMR in CD₃OD)

Figure S10. The spectroscopic data of 6

(C) The¹³C NMR spectrum of compound **6** in CD₃OD (125 MHz)

Figure S10. The spectroscopic data of **6** (D) The HSQC spectrum of compound **6** in CD₃OD (125 MHz)

Figure S11. Bioinformatic analysis of ThnC amino acid sequences.

TraH from terrestric acid gene cluster (*Penicillium crustosum*); TropC from tropolone gene cluster (*Talaromyces stipitatus* ATCC 10500); AsL3 from Xenovulene A gene cluster (*Sarocladium* sp. schorii); CitB from Citrinin gene cluster (*Monascus ruber*); VidW from Validamycin B gene cluster (*Streptomyces hygroscopicus* subsp. *limoneus*). The conserved His¹-X-Asp/Glu-X_n-His² iron-binding motifs were labeled in red box

Figure S12. SDS-PAGE analysis of purified ThnC.

Purification of C-(His)₆-tagged ThnC from *E. coli* BL21(DE3)/pZYG105.The acrylamide percentage of the SDS-PAGE gel is 12 %.

(i) minus ascorbic acid, (ii) minus FeSO₄, (iii) minus α -ketoglutarate (α -KG), (iv) minus ThnC, (v) a complete ThnC assay, (vi) **4** std. The ThnC enzyme assay was performed in Tris-HCI buffer (50 mm, pH 8.0) at 28°C containing 200 μ M **1**, 2 μ M ThnC, 5 mM L-ascorbic acid, 5 mM α -ketoglutarate, 1 mM FeSO₄.

References

- 1. N. Liu, Y. S. Hung, S. S. Gao, L. Hang, Y. Zou, Y. H. Chooi and Y. Tang, *Org Lett*, 2017, **19**, 3560-3563.
- 2. M. Chen, Q. Liu, S. S. Gao, A. E. Young, S. E. Jacobsen and Y. Tang, *Proc Natl Acad Sci U S A*, 2019, **116**, 5499-5504.
- 3. T. Nayak, E. Szewczyk, C. E. Oakley, A. Osmani, L. Ukil, S. L. Murray, M. J. Hynes, S. A. Osmani and B. R. Oakley, *Genetics*, 2006, **172**, 1557-1566.