Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Guaiazulene-4-carbaldehyde: Synthesis and Derivatisation

Georgia E. Williams, Gabriele Kociok-Köhn, Tony D. James and Simon E. Lewis

ELECTRONIC SUPPORTING INFORMATION

¹ H NMR spectra of selected neutral and protonated azulenes	•	•	•	Page S2
UV-vis absorbance titrations of selected azulenes with TFA	•	•		Page S5
Visible region absorbance spectra of selected azulenes .	•	•		Page S8
$^1\mathrm{H}$ and $^{13}\mathrm{C}\mathrm{NMR}$ spectra of all novel compounds .	•	•		Page S10
X-ray crystallographic data for 11				Page S22

Figure S1: *Top*: ¹H-NMR spectrum of **15** in CDCl₃. *Bottom*: ¹H-NMR spectrum of **15** in TFA/CDCl₃ 1:9.

Figure S2: *Top*: ¹H-NMR spectrum of **18** in CDCl₃. *Middle*: ¹H-NMR spectrum of **18** in TFA/CDCl₃ 1:9. *Bottom*: NMR tubes containing **18** in CDCl₃ (left) and **1** in TFA/CDCl₃ (right).

Figure S3: *Top*: ¹H-NMR spectrum of **20** in CDCl₃. *Middle*: ¹H-NMR spectrum of **20** in TFA/CDCl₃ 1:9. *Bottom*: NMR tubes containing **20** in CDCl₃ (left) and **1** in TFA/CDCl₃ (right).

Figure S4: Titration of 15 with TFA in CH_2Cl_2 .

Figure S5: Titration of 18 with TFA in CH₂Cl₂.

Figure S6: Titration of 20 with TFA in CH₂Cl₂.

Figure S7: Visible region absorption spectra of selected azulenes in CH₂Cl₂ (normalised to 0.1 mM)

Azulene	$λ_{max}$ [nm] (log ε)
11	697 (2.65)
12	612 (2.12)
14	648 (2.68)
16	675 (2.55)
18	654 (2.42)
20	664 (2.08)
22	661 (2.63)
23	665 (2.44)

Table S1: Absorption maxima of selected azulenes in CH₂Cl₂.

Figure S8: Visible region absorption spectra of selected azulenes in CH₂Cl₂ (normalised Abs = 1)

S12

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 f1 (ppm)

5			
Identification code	CCDC 2047319		
Empirical formula	C ₁₅ H ₁₆ O		
Formula weight	212.28		
Temperature	150.01(10) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 10.37310(10) Å	α= 90°.	
	b = 6.72170(10) Å	β= 90°.	
	c = 16.6660(2) Å	$\gamma = 90^{\circ}.$	
Volume	1162.03(2) Å ³		
Z	4		
Density (calculated)	1.213 Mg/m ³		
Absorption coefficient	0.572 mm ⁻¹		
F(000)	456		
Crystal size	$0.493 \ x \ 0.145 \ x \ 0.080 \ mm^3$		
Theta range for data collection	5.022 to 73.439°.		
Index ranges	-12<=h<=11, -8<=k<=7, -20<=	=l<=20	
Reflections collected	11287		
Independent reflections	1277 [R(int) = 0.0371]		
Completeness to $\theta = 67.684^{\circ}$	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.559		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	1277 / 0 / 97		
Goodness-of-fit on F ²	1.063		
Final R indices [I>2 σ (I)]	R1 = 0.0431, wR2 = 0.1183		
R indices (all data)	R1 = 0.0442, wR2 = 0.1197		
Extinction coefficient	0.0034(7)		
Largest diff. peak and hole	0.369 and -0.202 e.Å ⁻³		

 Table S2. Crystal data and structure refinement for 11.

	Х	У	Z	U(eq)	_
0	6959(1)	2500	6716(1)	35(1)	-
C(1)	6615(2)	2500	6024(1)	29(1)	
C(2)	5245(1)	2500	5752(1)	23(1)	
C(3)	4328(2)	2500	6366(1)	26(1)	
C(4)	2992(1)	2500	6334(1)	25(1)	
C(5)	2147(1)	2500	5674(1)	23(1)	
C(6)	702(1)	2500	5854(1)	28(1)	
C(7)	290(1)	4359(2)	6309(1)	38(1)	
C(8)	2512(1)	2500	4872(1)	23(1)	
C(9)	3734(1)	2500	4522(1)	21(1)	
C(10)	3957(2)	2500	3692(1)	25(1)	
C(11)	2967(2)	2500	3039(1)	29(1)	
C(12)	5304(2)	2500	3576(1)	28(1)	
C(13)	5949(1)	2500	4303(1)	27(1)	
C(14)	5031(1)	2500	4926(1)	22(1)	
Table S4. Bond ler	ngths [Å] for 11 .				_
O-C(1)	1.208(2)		C(8)-C(9)	1.3	95(2)
C(1)-C(2)	1.491(2)		C(8)-H(8)	0.9	500
C(1)-H(1)	0.9500		C(9)-C(10)	1.4	025(19)
C(2)-C(14)	1.394(2)		C(9)-C(14)	1.5	044(19)
C(2)-C(3)	1.397(2)		C(10)-C(12)	1.4	10(2)
C(3)-C(4)	1.387(2)		C(10)-C(11)	1.4	97(2)
C(3)-H(3)	0.9500		C(11)-H(11A)	0.9	800
C(4)-C(5)	1.406(2)		C(11)-H(11B)	0.9	800
C(4)-H(4)	0.9500		C(11)-H(11C)	0.9	800
C(5)-C(8)	1.389(2)		C(11)-H(11A)#1	0.9	80(13)
C(5)-C(6)	1.5288(19)		C(11)-H(11B)#1	0.9	80(9)
C(6)-C(7)	1.5231(15)		C(11)-H(11C)#1	0.9	80(4)
C(6)-C(7)#1	1.5232(15)		C(12)-C(13)	1.3	84(2)
C(6)-H(6)	1.0000		С(12)-Н(12)	0.9	500
C(7)-H(7A)	0.9800		C(13)-C(14)	1.4	09(2)
C(7)-H(7B)	0.9800		С(13)-Н(13)	0.9	500
C(7)-H(7C)	0.9800				

Table S3. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **11**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S5.	Bond	angles	[°]	for	11.
-----------	------	--------	-----	-----	-----

O-C(1)-C(2)	124.90(15)	C(9)-C(10)-C(12)	107.38(13)
O-C(1)-H(1)	117.5	C(9)-C(10)-C(11)	127.16(14)
C(2)-C(1)-H(1)	117.5	C(12)-C(10)-C(11)	125.46(14)
C(14)-C(2)-C(3)	127.91(13)	C(10)-C(11)-H(11A)	109.5
C(14)-C(2)-C(1)	116.90(13)	C(10)-C(11)-H(11B)	109.5
C(3)-C(2)-C(1)	115.19(13)	H(11A)-C(11)-H(11B)	109.5
C(4)-C(3)-C(2)	130.66(13)	C(10)-C(11)-H(11C)	109.5
C(4)-C(3)-H(3)	114.7	H(11A)-C(11)-H(11C)	109.5
C(2)-C(3)-H(3)	114.7	H(11B)-C(11)-H(11C)	109.5
C(3)-C(4)-C(5)	130.78(13)	C(10)-C(11)-H(11A)#1	109.5(3)
C(3)-C(4)-H(4)	114.6	H(11A)-C(11)-H(11A)#1	71.7
C(5)-C(4)-H(4)	114.6	H(11B)-C(11)-H(11A)#1	137.7
C(8)-C(5)-C(4)	125.62(13)	H(11C)-C(11)-H(11A)#1	40.6
C(8)-C(5)-C(6)	117.16(13)	C(10)-C(11)-H(11B)#1	109.5(2)
C(4)-C(5)-C(6)	117.21(12)	H(11A)-C(11)-H(11B)#1	137.7
C(7)-C(6)-C(7)#1	110.27(13)	H(11B)-C(11)-H(11B)#1	40.6
C(7)-C(6)-C(5)	111.89(8)	H(11C)-C(11)-H(11B)#1	71.7
C(7)#1-C(6)-C(5)	111.89(8)	H(11A)#1-C(11)-H(11B)#1	109.5
C(7)-C(6)-H(6)	107.5	C(10)-C(11)-H(11C)#1	109.47(8)
C(7)#1-C(6)-H(6)	107.5	H(11A)-C(11)-H(11C)#1	40.6
C(5)-C(6)-H(6)	107.5	H(11B)-C(11)-H(11C)#1	71.7
C(6)-C(7)-H(7A)	109.5	H(11C)-C(11)-H(11C)#1	137.7
C(6)-C(7)-H(7B)	109.5	H(11A)#1-C(11)-H(11C)#1	109.5
H(7A)-C(7)-H(7B)	109.5	H(11B)#1-C(11)-H(11C)#1	109.5
C(6)-C(7)-H(7C)	109.5	C(13)-C(12)-C(10)	111.05(13)
H(7A)-C(7)-H(7C)	109.5	С(13)-С(12)-Н(12)	124.5
H(7B)-C(7)-H(7C)	109.5	С(10)-С(12)-Н(12)	124.5
C(5)-C(8)-C(9)	130.56(14)	C(12)-C(13)-C(14)	108.57(13)
C(5)-C(8)-H(8)	114.7	С(12)-С(13)-Н(13)	125.7
C(9)-C(8)-H(8)	114.7	С(14)-С(13)-Н(13)	125.7
C(8)-C(9)-C(10)	124.22(14)	C(2)-C(14)-C(13)	128.30(14)
C(8)-C(9)-C(14)	128.68(13)	C(2)-C(14)-C(9)	125.78(13)
C(10)-C(9)-C(14)	107.09(12)	C(13)-C(14)-C(9)	105.91(13)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
0	29(1)	40(1)	37(1)	0	-12(1)	0
C(1)	22(1)	32(1)	34(1)	0	-5(1)	0
C(2)	20(1)	20(1)	28(1)	0	-4(1)	0
C(3)	26(1)	27(1)	23(1)	0	-5(1)	0
C(4)	24(1)	29(1)	22(1)	0	1(1)	0
C(5)	20(1)	24(1)	26(1)	0	0(1)	0
C(6)	20(1)	37(1)	27(1)	0	0(1)	0
C(7)	27(1)	33(1)	55(1)	1(1)	5(1)	6(1)
C(8)	21(1)	23(1)	24(1)	0	-4(1)	0
C(9)	21(1)	20(1)	23(1)	0	-2(1)	0
C(10)	27(1)	23(1)	24(1)	0	0(1)	0
C(11)	33(1)	31(1)	22(1)	0	-1(1)	0
C(12)	29(1)	29(1)	28(1)	0	7(1)	0
C(13)	20(1)	28(1)	33(1)	0	3(1)	0
C(14)	20(1)	19(1)	29(1)	0	-1(1)	0

Table S6. Anisotropic displacement parameters (Å²x 10³) for **11**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Ζ	U(eq)
H(1)	7265	2500	5623	35
H(3)	4678	2500	6893	31
H(4)	2578	2500	6842	30
H(6)	237	2500	5328	33
H(7A)	547	5544	6006	57
H(7B)	707	4377	6837	57
H(7C)	-648	4353	6378	57
H(8)	1817	2500	4501	27
H(11A)	2243	1646	3194	43
H(11B)	3353	1994	2542	43
H(11C)	2656	3860	2952	43
H(12)	5714	2500	3066	34
H(13)	6858	2500	4370	32

Table S7. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **11**.

 Table S8.
 Torsion angles [°] for 11.

O-C(1)-C(2)-C(14)	180.000(1)	C(14)-C(9)-C(10)-C(12)	0.000(1)
O-C(1)-C(2)-C(3)	0.000(1)	C(8)-C(9)-C(10)-C(11)	0.000(1)
C(14)-C(2)-C(3)-C(4)	0.000(1)	C(14)-C(9)-C(10)-C(11)	180.000(1)
C(1)-C(2)-C(3)-C(4)	180.000(1)	C(9)-C(10)-C(12)-C(13)	0.000(1)
C(2)-C(3)-C(4)-C(5)	0.000(1)	C(11)-C(10)-C(12)-C(13)	180.000(1)
C(3)-C(4)-C(5)-C(8)	0.000(1)	C(10)-C(12)-C(13)-C(14)	0.000(1)
C(3)-C(4)-C(5)-C(6)	180.000(1)	C(3)-C(2)-C(14)-C(13)	180.000(1)
C(8)-C(5)-C(6)-C(7)	-117.84(9)	C(1)-C(2)-C(14)-C(13)	0.000(1)
C(4)-C(5)-C(6)-C(7)	62.16(9)	C(3)-C(2)-C(14)-C(9)	0.000(1)
C(8)-C(5)-C(6)-C(7)#1	117.84(9)	C(1)-C(2)-C(14)-C(9)	180.000(1)
C(4)-C(5)-C(6)-C(7)#1	-62.16(9)	C(12)-C(13)-C(14)-C(2)	180.000(1)
C(4)-C(5)-C(8)-C(9)	0.000(1)	C(12)-C(13)-C(14)-C(9)	0.000(1)
C(6)-C(5)-C(8)-C(9)	180.000(1)	C(8)-C(9)-C(14)-C(2)	0.000(1)
C(5)-C(8)-C(9)-C(10)	180.000(1)	C(10)-C(9)-C(14)-C(2)	180.000(1)
C(5)-C(8)-C(9)-C(14)	0.000(1)	C(8)-C(9)-C(14)-C(13)	180.000(1)
C(8)-C(9)-C(10)-C(12)	180.000(1)	C(10)-C(9)-C(14)-C(13)	0.000(1)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z