Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

SUPPORTING INFORMATION

Tailoring the HSO₄⁻ anion hybrid receptor based on phenazine

derivative

Xiao-Ni Qi a, Hong-Qiang Dong a, Hai-Long Yang a, Wen-Jun Qu a, You-Ming Zhang a, Hong Yao a,

Qi Lin ^a and Tai-Bao Wei ^{a*}

Contribution from:

a Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China

TABLE OF CONTENTS

The general procedure for fluorescence spectra experiments

Scheme S1 Synthesis compound PD and control compound D-1.

Fig. S1 The ESI-MS of PD: $[M+H]^+ = 329.10326$.

Fig. S2 The response fluorescence intensity PD (20 µM) were present in diffrent solvent solution.

Fig. S3 The response fluorescence intensity PD (20 μ M) at different water volume fractions (Vol%).

Fig S4. Fluorescence response of the PD $(2.0 \times 10-4 \text{ M})$ in the presence of various solvent and different times (Ex = 450 nm, 0 h,12 h,24 h,48 h,72 h,96 h)

Fig S5. ¹³C NMR spectrum (150 MHz, DMSO-d6, 293 K) of PD

Fig. S6 Fluorescence response of the PD-HSO₄⁻ in the presence of various caions From 1 to 15: PD, PD-HSO₄⁻, Zn²⁺, Cd²⁺, Hg²⁺, Co²⁺, Ni²⁺, Al³⁺, Fe³⁺, Cu²⁺, Pb²⁺, Mg²⁺, Ba²⁺, Cr³⁺ in three solvent system DMSO/Ethanol/H₂O (1:8:1,v/v/v) solution. Inset: Histogram showing the change of the solution of PD-HSO₄⁻ in three solvent system DMSO/Ethanol/H₂O(1:8:1,v/v/v) solution after addition other cations(25equiv.).

Fig. S7 Fluorescence response of the PD-HSO₄⁻ in the presence of various anions (25equiv). From 1 to 20: PD ,PD-HSO₄⁻, ClO₄⁻, HPO₄⁻, F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, CN⁻, SCN⁻, NO₃⁻, SO₃²⁻, NO₂⁻, P₂O₇⁴⁻, PO₄³⁻, C₂O₄²⁻, S₂O₃²⁻, CO₃²⁻) in three solvent system DMSO/Ethanol/H₂O (1:8:1, v/v/v) solution anions.

Fig. S8 Mass spectrum of PD-HSO₄⁻ complex (ESI-MS).

Fig. S9 IR spectrum of PD-HSO₄-complex.

Figure S10 The pH-Dependent fluorescence responses of PD (pH from 1 to 13).

Fig S11 The linear fitting equation and the limitation of PD to the HSO₄⁻.

Fig S12 A diagrammatic figure of electron density distribution.

The general procedure for fluorescence spectra experiments

The solution of sensor PD $(2.0 \times 10^{-5} \text{ M})$ in DMSO/ethaonal (1:4,v/v) was prepared and stored in a dry atmosphere. The solution was used for all specification studies, all analytical substrates $(1.0 \times 10^{-2} \text{ M})$ were prepared in deionized water with HEPES buffer solutions (pH=7.2). All fluorescence spectra were performed in DMSO/ethanol/H₂O (1:8:1,v/v/v) solution via Shimadzu RF-5301 spectrometer.

Preparation of Starting Materials

o-phenylenediamine(1a), 3,4-dihydroxybenzaldehyde(1b) and benzaldehyde (1c) were commercially available. 2,3-diamino-phenazine 2a and 3a was prepared according to literature[1].

Synthesis compound PD and D-1

Intermediate(2a) 2,3-diamino-phenazine (0.42g, 2mmol), 3,4-dihydroxybenzaldehyde (0.35g, 2.5mmol) and acetic acid (1-2mL) as the catalyst were mixed in hot absolute DMF (20 mL).The solution was mechanically stirred for 24 hours under continuous refluxing conditions, then the dark brown precipitate was achieved by filtrating the mixture after cooling to room temperature, finally alternately washed with hot absolute ethanol and deionized water five times, then recrystallized with DMF/H₂O(5:3,v/v) to get dark brown product compound PD. The

control compounds D-1 was synthesized according to the reported literature[2,3]. The synthetic diagram could be shown in Scheme S1.

Scheme S1 Synthesis of compound PD and control compound D-1

Solvent screening

At firstly, we investigated the various solvent effect on the fluorescence intensity and lifetime of the PD, including water, methanol, ethanol, acetone, dichloromethane (DCM), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), ethyl acetate, and acetonitrile. As shown in Fig. S1, the PD $(2.0 \times 10^{-4} \text{ M})$ could completely dissolve in Dimethyl sulfoxide and N, N-Dimethyl acrylamide and partly dissolve in other different solvent together with some apparent precipitation. It is a pity that no fluorescence also been found in the water and dichloromethane (DCM) solvent. However, the maximum fluorescence emission intensity and the longer fluorescence lifetime of the PD appeared in the ethanol solvent as shown in Fig.S 2.

characteristic into consideration to choose the ethanol as the solvent under the help of DMSO as the solubilizer. In view of water system could be beneficial to the interaction between the receptor and anions, the results suggested that with the water content increasing, the fluorescence emission intensity at 535 nm reduced gradually. The emission intensity was maximized when the water content reached 10%. Finally, we selected the minimal integer fraction DMSO/ethanol/H₂O (1:8:1 v/v/v) system as the optimal mixed solvent as shown in Fig.S3. Hence, we carried out a series of experiments in DMSO/ethanol/H2O (1:8:1 v/v/v) HEPES buffered solution (pH 7. 2).

Figure S1The response fluorescence intensity PD (20 μ M) were present in diffrent solvent

solution.Insert : Dissolve situation of PD appeared in various solvent.

Figure S 2 The response fluorescence intensity PD (20 μ M) at different water volume fractions (Vol%)Insert From 1 to 10:0,10%,20%,30%,40%,50%,60%,70%,80%,90%.

Fig S3. Fluorescence response of the PD $(2.0 \times 10^{-4} \text{ M})$ in the presence of various solvent

and different times (Ex = 450 nm, 0 h,12 h,24 h,48 h,72 h,96 h)

Figure S4 The ESI-MS of PD: [M+H+] = 329.10326 (ESI-MS m/z: [M+H+] Calcd for C19H12N4O2 329.10389; Found 329.10326)

fl (ppm)

Figure S5¹³C NMR spectrum (150 MHz, DMSO-*d*₆, 293 K) of PD

Fig S6. Fluorescence response of the PD-HSO₄⁻ in the presence of various caions. From 1 to 15: PD, PD-HSO₄⁻, Zn²⁺, Cd²⁺, Hg²⁺, Co²⁺, Ni²⁺, Al³⁺, Fe³⁺, Cu²⁺, Pb²⁺, Mg²⁺, Ba²⁺, Cr³⁺in three solvent system DMSO/Ethanol/H₂O (1:8:1, v/v/v) solution

Fig S7. Fluorescence response of the PD- HSO₄⁻ in the presence of various anions. From1 to 20: PD, PD-HSO₄⁻, PD, ClO₄⁻, HSO₄⁻, F⁻, Cl⁻, Br⁻, I⁻, CH₃COO⁻, H₂PO₄⁻, CN⁻,SCN⁻,

Fig. S8 ESI-MS of PD-HSO₄⁻ [M⁻]=425.05635 (ESI-MS m/z: [M⁻]Calcd for C₁₉H₁₃N₄O₆S 425.05558; Found 425.05635)

Fig S9 IR spectrum of PD-HSO₄⁻ complex

Fig S10 The pH-Dependent fluorescence responses of PD $(2 \times 10^{-5} \text{ M})$ (pH from 1 to 13).

Fig S11 The linear fitting equation and the detection limit of PD to the HSO₄-

Fig S12 A diagrammatic figure of electron density distribution for model 1 (left) and model 2 (right).

Table S1 The optimization of practical orientation of the molecular structure	in spatial
distribution for the PD-HSO ₄ -(mode 2)	

Center	Atomic	Atomic	(Coordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-7.804625	1.286816	-0.010912
2	6	0	-6.500231	1.705173	-0.019335
3	6	0	-5.443493	0.745517	-0.014882
4	6	0	-5.770287	-0.664498	-0.001038
5	6	0	-7.141486	-1.059530	0.007336

6	6	0	-8.127945	-0.108545	0.002426
7	6	0	-3.509145	-1.189921	-0.004615
8	6	0	-3.180353	0.226122	-0.019162
9	6	0	-1.822826	0.654793	-0.030226
10	1	0	-1.597142	1.709858	-0.041848
11	6	0	-0.862554	-0.320884	-0.026042
12	6	0	-1.187128	-1.718113	-0.008247
13	6	0	-2.477576	-2.172263	0.001820
14	1	0	-8.606799	2.011765	-0.014242
15	1	0	-6.224613	2.749505	-0.029433
16	1	0	-7.356104	-2.118180	0.017553
17	1	0	-9.167499	-0.406218	0.008761
18	1	0	-2.757038	-3.214816	0.014337
19	7	0	-4.800387	-1.605849	0.003925
20	7	0	-4.159787	1.165171	-0.023758
21	7	0	0.536805	-0.241963	-0.032606
22	6	0	1.078733	-1.481284	-0.025141
23	7	0	0.049954	-2.386229	-0.008318
24	1	0	0.170482	-3.382162	-0.042965
25	6	0	2.485497	-1.783801	-0.023736
26	6	0	3.395930	-0.731905	-0.273996
27	6	0	2.976489	-3.078217	0.253517
28	6	0	4.755745	-0.960627	-0.211640
29	1	0	3.048314	0.256275	-0.522627
30	6	0	4.347522	-3.310450	0.286507

31	1	0	2.306013	-3.897994	0.475490
32	6	0	5.237523	-2.259518	0.059950
33	8	0	6.587336	-2.474132	0.106345
34	1	0	7.060847	-1.632827	-0.058267
35	16	0	3.118768	3.021700	0.043247
36	8	0	2.891205	4.623989	-0.518674
37	8	0	3.376969	3.596310	1.611626
38	8	0	4.402836	2.283148	-0.649821
39	1	0	4.749147	-4.288593	0.503624
40	8	0	5.728536	-0.009759	-0.398944
41	1	0	5.356010	0.911275	-0.477940
42	1	0	1.071921	0.648422	-0.024779
43	8	0	1.758285	2.119868	-0.116760

Table S2 The optimization of Standard orientation of the molecular structure in spatial
distribution for the PD-HSO4-(mode 2)

Center	Atomic	Atomic	Coord	inates (Angstre	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-7.804625	1.286816	-0.010912
2	6	0	-6.500231	1.705173	-0.019335
3	6	0	-5.443493	0.745517	-0.014882
4	6	0	-5.770287	-0.664498	-0.001038
5	6	0	-7.141486	-1.059530	0.007336

6	6	0	-8.127945	-0.108545	0.002426
7	6	0	-3.509145	-1.189921	-0.004615
8	6	0	-3.180353	0.226122	-0.019162
9	6	0	-1.822826	0.654793	-0.030226
10	1	0	-1.597142	1.709858	-0.041848
11	6	0	-0.862554	-0.320884	-0.026042
12	6	0	-1.187128	-1.718113	-0.008247
13	6	0	-2.477576	-2.172263	0.001820
14	1	0	-8.606799	2.011765	-0.014242
15	1	0	-6.224613	2.749505	-0.029433
16	1	0	-7.356104	-2.118180	0.017553
17	1	0	-9.167499	-0.406218	0.008761
18	1	0	-2.757038	-3.214816	0.014337
19	7	0	-4.800387	-1.605849	0.003925
20	7	0	-4.159787	1.165171	-0.023758
21	7	0	0.536805	-0.241963	-0.032606
22	6	0	1.078733	-1.481284	-0.025141
23	7	0	0.049954	-2.386229	-0.008318
24	1	0	0.170482	-3.382162	-0.042965
25	6	0	2.485497	-1.783801	-0.023736
26	6	0	3.395930	-0.731905	-0.273996
27	6	0	2.976489	-3.078217	0.253517
28	6	0	4.755745	-0.960627	-0.211640
29	1	0	3.048314	0.256275	-0.522627
30	6	0	4.347522	-3.310450	0.286507

31	1	0	2.306013	-3.897994	0.475490
32	6	0	5.237523	-2.259518	0.059950
33	8	0	6.587336	-2.474132	0.106345
34	1	0	7.060847	-1.632827	-0.058267
35	16	0	3.118768	3.021700	0.043247
36	8	0	2.891205	4.623989	-0.518674
37	8	0	3.376969	3.596310	1.611626
38	8	0	4.402836	2.283148	-0.649821
39	1	0	4.749147	-4.288593	0.503624
40	8	0	5.728536	-0.009759	-0.398944
41	1	0	5.356010	0.911275	-0.477940
42	1	0	1.071921	0.648422	-0.024779
43	8	0	1.758285	2.119868	-0.116760

Table S3 The optimization of practical orientation of the molecular structure in spatial
distribution for the PD-HSO4-(mode 1)

Center	Atomic	Atomic	Coordin	ates (Angstroi	ns)
Number	Number	т Туре	Х	Y	Z
1	6	0	-8.158675	0.184070	0.054010
2	6	0	-7.145585	1.111640	0.072815
3	6	0	-5.787314	0.681977	0.034779
4	6	0	-5.494008	-0.730707	-0.023781

5	6	0	-6.566520	-1.661084	-0.040972
6	6	0	-7.866839	-1.211589	-0.002959
7	6	0	-3.216176	-0.273048	-0.045345
8	6	0	-3.511592	1.154292	0.015455
9	6	0	-2.460272	2.104067	0.034697
10	1	0	-2.690609	3.157207	0.081430
11	6	0	-1.153709	1.630577	-0.009147
12	6	0	-0.875822	0.209336	-0.073860
13	6	0	-1.862146	-0.736757	-0.089321
14	1	0	-9.190123	0.506530	0.082789
15	1	0	-7.332827	2.174632	0.116289
16	1	0	-6.318703	-2.711485	-0.084121
17	1	0	-8.683333	-1.920245	-0.015989
18	1	0	-1.676191	-1.798923	-0.131303
19	7	0	-4.211740	-1.182155	-0.063228
20	7	0	-4.793408	1.601016	0.053907
21	7	0	0.024649	2.339985	-0.000296
22	6	0	1.013999	1.398022	-0.065133
23	7	0	0.511339	0.121581	-0.106059
24	1	0	1.057924	-0.760549	-0.140396
25	6	0	2.413298	1.729581	-0.069916
26	6	0	2.811275	3.086749	0.094951
27	6	0	3.381998	0.731646	-0.208718
28	6	0	4.158330	3.403710	0.135246
29	1	0	2.051047	3.846275	0.191157

30	6	0	4.741804	1.031052	-0.144082	
31	1	0	3.093392	-0.290645	-0.382689	
32	6	0	5.131715	2.399227	0.024020	
33	1	0	4.472528	4.432082	0.260508	
34	8	0	5.707668	0.101026	-0.224292	
35	1	0	5.342240	-0.842549	-0.282698	
36	8	0	6.470737	2.649078	0.068559	
37	1	0	6.680762	3.592386	0.188252	
38	16	0	3.259563	-2.935532	0.192833	
39	8	0	3.347077	-3.244006	1.770598	
40	8	0	3.109897	-4.526327	-0.684780	
41	1	0	2.335329	-4.390286	-1.277108	
42	8	0	4.586462	-2.236996	-0.478195	
43	8	0	1.861551	-2.198457	-0.331660	

--

Table S4 The optimization of Standard orientation of the molecularstructurein spatial distribution for the PD-HSO4-(mode 1)

Center	Atomic	Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	8.158675	-0.184070	0.054010
2	6	0	7.145585	-1.111640	0.072815

17

3	6	0	5.787314	-0.681977	0.034779
4	6	0	5.494008	0.730707	-0.023781
5	6	0	6.566520	1.661084	-0.040972
6	6	0	7.866839	1.211589	-0.002959
7	6	0	3.216176	0.273048	-0.045345
8	6	0	3.511592	-1.154292	0.015455
9	6	0	2.460271	-2.104067	0.034697
10	1	0	2.690609	-3.157207	0.081430
11	6	0	1.153709	-1.630577	-0.009147
12	6	0	0.875822	-0.209336	-0.073860
13	6	0	1.862146	0.736757	-0.089321
14	1	0	9.190123	-0.506530	0.082789
15	1	0	7.332827	-2.174632	0.116289
16	1	0	6.318703	2.711485	-0.084121
17	1	0	8.683333	1.920245	-0.015989
18	1	0	1.676191	1.798923	-0.131303
19	7	0	4.211740	1.182155	-0.063228
20	7	0	4.793408	-1.601016	0.053907
21	7	0	-0.024649	-2.339985	-0.000296
22	6	0	-1.013999	-1.398022	-0.065133
23	7	0	-0.511339	-0.121581	-0.106059
24	1	0	-1.057924	0.760549	-0.140396
25	6	0	-2.413298	-1.729581	-0.069916
26	6	0	-2.811275	-3.086749	0.094951
27	6	0	-3.381998	-0.731646	-0.208718

28	6	0	-4.158330	-3.403710	0.135246		
29	1	0	-2.051047	-3.846275	0.191157		
30	6	0	-4.741804	-1.031052	-0.144082		
31	1	0	-3.093392	0.290645	-0.382689		
32	6	0	-5.131715	-2.399227	0.024020		
33	1	0	-4.472528	-4.432082	0.260508		
34	8	0	-5.707668	-0.101026	-0.224292		
35	1	0	-5.342240	0.842549	-0.282698		
36	8	0	-6.470737	-2.649078	0.068559		
37	1	0	-6.680762	-3.592386	0.188252		
38	16	0	-3.259563	2.935532	0.192833		
39	8	0	-3.347077	3.244006	1.770598		
40	8	0	-3.109897	4.526327	-0.684780		
41	1	0	-2.335329	4.390286	-1.277108		
42	8	0	-4.586462	2.236996	-0.478195		
43	8	0	-1.861551	2.198457	-0.331660		
Table S5 The optimization of practical orientation of the molecular structure in spatial distribution for the PD.							
- Center Atomic Atomic Coordinates (Angstroms)							

C Number Number Type X Y Z

-7.804625 1.286816 -0.010912 1 6 0

2	6	0	-6.500231	1.705173	-0.019335
3	6	0	-5.443493	0.745517	-0.014882
4	6	0	-5.770287	-0.664498	-0.001038
5	6	0	-7.141486	-1.059530	0.007336
6	6	0	-8.127945	-0.108545	0.002426
7	6	0	-3.509145	-1.189921	-0.004615
8	6	0	-3.180353	0.226122	-0.019162
9	6	0	-1.822826	0.654793	-0.030226
10	1	0	-1.597142	1.709858	-0.041848
11	6	0	-0.862554	-0.320884	-0.026042
12	6	0	-1.187128	-1.718113	-0.008247
13	6	0	-2.477576	-2.172263	0.001820
14	1	0	-8.606799	2.011765	-0.014242
15	1	0	-6.224613	2.749505	-0.029433
16	1	0	-7.356104	-2.118180	0.017553
17	1	0	-9.167499	-0.406218	0.008761
18	1	0	-2.757038	-3.214816	0.014337
19	7	0	-4.800387	-1.605849	0.003925
20	7	0	-4.159787	1.165171	-0.023758
21	7	0	0.536805	-0.241963	-0.032606
22	6	0	1.078733	-1.481284	-0.025141
23	7	0	0.049954	-2.386229	-0.008318
24	1	0	0.170482	-3.382162	-0.042965
25	6	0	2.485497	-1.783801	-0.023736
26	6	0	3.395930	-0.731905	-0.273996

2860 4.755745 -0.960627 -0.211640 29 10 3.048314 0.256275 -0.522627 30 60 4.347522 -3.310450 0.286507 31 10 2.306013 -3.897994 0.475490 32 60 5.237523 -2.259518 0.059950 33 80 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	27	6	0	2.976489	-3.078217	0.253517
2910 3.048314 0.256275 -0.522627 30 60 4.347522 -3.310450 0.286507 31 10 2.306013 -3.897994 0.475490 32 60 5.237523 -2.259518 0.059950 33 80 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	28	6	0	4.755745	-0.960627	-0.211640
3060 4.347522 -3.310450 0.286507 31 10 2.306013 -3.897994 0.475490 32 60 5.237523 -2.259518 0.059950 33 80 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	29	1	0	3.048314	0.256275	-0.522627
3110 2.306013 -3.897994 0.475490 32 60 5.237523 -2.259518 0.059950 33 80 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 4.749147 -4.288593 0.503624 40 80 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	30	6	0	4.347522	-3.310450	0.286507
3260 5.237523 -2.259518 0.059950 33 80 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 4.749147 -4.288593 0.503624 40 80 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	31	1	0	2.306013	-3.897994	0.475490
3380 6.587336 -2.474132 0.106345 34 10 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 4.749147 -4.288593 0.503624 40 80 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	32	6	0	5.237523	-2.259518	0.059950
3410 7.060847 -1.632827 -0.058267 35 160 3.118768 3.021700 0.043247 36 80 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 4.749147 -4.288593 0.503624 40 80 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	33	8	0	6.587336	-2.474132	0.106345
35 16 0 3.118768 3.021700 0.043247 36 8 0 2.891205 4.623989 -0.518674 37 8 0 3.376969 3.596310 1.611626 38 8 0 4.402836 2.283148 -0.649821 39 1 0 4.749147 -4.288593 0.503624 40 8 0 5.728536 -0.009759 -0.398944 41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	34	1	0	7.060847	-1.632827	-0.058267
3680 2.891205 4.623989 -0.518674 37 80 3.376969 3.596310 1.611626 38 80 4.402836 2.283148 -0.649821 39 10 4.749147 -4.288593 0.503624 40 80 5.728536 -0.009759 -0.398944 41 10 5.356010 0.911275 -0.477940 42 10 1.071921 0.648422 -0.024779	35	16	0	3.118768	3.021700	0.043247
37 8 0 3.376969 3.596310 1.611626 38 8 0 4.402836 2.283148 -0.649821 39 1 0 4.749147 -4.288593 0.503624 40 8 0 5.728536 -0.009759 -0.398944 41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	36	8	0	2.891205	4.623989	-0.518674
38 8 0 4.402836 2.283148 -0.649821 39 1 0 4.749147 -4.288593 0.503624 40 8 0 5.728536 -0.009759 -0.398944 41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	37	8	0	3.376969	3.596310	1.611626
39 1 0 4.749147 -4.288593 0.503624 40 8 0 5.728536 -0.009759 -0.398944 41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	38	8	0	4.402836	2.283148	-0.649821
40 8 0 5.728536 -0.009759 -0.398944 41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	39	1	0	4.749147	-4.288593	0.503624
41 1 0 5.356010 0.911275 -0.477940 42 1 0 1.071921 0.648422 -0.024779	40	8	0	5.728536	-0.009759	-0.398944
42 1 0 1.071921 0.648422 -0.024779	41	1	0	5.356010	0.911275	-0.477940
	42	1	0	1.071921	0.648422	-0.024779
43 8 0 1.758285 2.119868 -0.116760	43	8	0	1.758285	2.119868	-0.116760

Table S6 The optimization of standard orientation of the molecular structure in spatialdistribution for the PD.

Center	Atomic	Atomic	Coordin	nates (Angstror	ns)	
Number	Number	Туре	Х	Y	Z	

1	6	0	-7.804625	1.286816	-0.010912
2	6	0	-6.500231	1.705173	-0.019335
3	6	0	-5.443493	0.745517	-0.014882
4	6	0	-5.770287	-0.664498	-0.001038
5	6	0	-7.141486	-1.059530	0.007336
6	6	0	-8.127945	-0.108545	0.002426
7	6	0	-3.509145	-1.189921	-0.004615
8	6	0	-3.180353	0.226122	-0.019162
9	6	0	-1.822826	0.654793	-0.030226
10	1	0	-1.597142	1.709858	-0.041848
11	6	0	-0.862554	-0.320884	-0.026042
12	6	0	-1.187128	-1.718113	-0.008247
13	6	0	-2.477576	-2.172263	0.001820
14	1	0	-8.606799	2.011765	-0.014242
15	1	0	-6.224613	2.749505	-0.029433
16	1	0	-7.356104	-2.118180	0.017553
17	1	0	-9.167499	-0.406218	0.008761
18	1	0	-2.757038	-3.214816	0.014337
19	7	0	-4.800387	-1.605849	0.003925
20	7	0	-4.159787	1.165171	-0.023758
21	7	0	0.536805	-0.241963	-0.032606
22	6	0	1.078733	-1.481284	-0.025141
23	7	0	0.049954	-2.386229	-0.008318
24	1	0	0.170482	-3.382162	-0.042965

--

22

25	6	0	2.485497	-1.783801	-0.023736
26	6	0	3.395930	-0.731905	-0.273996
27	6	0	2.976489	-3.078217	0.253517
28	6	0	4.755745	-0.960627	-0.211640
29	1	0	3.048314	0.256275	-0.522627
30	6	0	4.347522	-3.310450	0.286507
31	1	0	2.306013	-3.897994	0.475490
32	6	0	5.237523	-2.259518	0.059950
33	8	0	6.587336	-2.474132	0.106345
34	1	0	7.060847	-1.632827	-0.058267
35	16	0	3.118768	3.021700	0.043247
36	8	0	2.891205	4.623989	-0.518674
37	8	0	3.376969	3.596310	1.611626
38	8	0	4.402836	2.283148	-0.649821
39	1	0	4.749147	-4.288593	0.503624
40	8	0	5.728536	-0.009759	-0.398944
41	1	0	5.356010	0.911275	-0.477940
42	1	0	1.071921	0.648422	-0.024779
43	8	0	1.758285	2.119868	-0.116760

Complete Reference for Gaussian (Reference 10 in manuscript)

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.

Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,

A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.

E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J.

B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Reference:

[1] A. M. Amer, A. A. El-Bahnasawi, M. R. H. Mahran, M. Lapib. *fuel Chemie*, 1999, 130, 1217–1225.

[2] G. Y. Gao, W. J. Qu, B. B. Shi, P. Zhang, Q. Lin, H. Yao. T. B. Wei. Spectro Acta Part A: Mol. Bio. Spe.2014,121,514-519.

[3] T. B. Wei, B. R. Yong, L. R. Dang, Y. M. Zhang, H. Yao, Q. Lin. Dyes Pig., 2019, 171, 107707.

i