Supporting Information

Synthesis and properties of pH-cleavable toothbrush-like copolymers comprising multi-reactive Y junctions and linear or cyclic backbone Jian Zhang, Xiaomin Zhu, Cheng Miao, Yanzhe He and Youliang Zhao* Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China E-mail: ylzhao@suda.edu.cn

Scheme S1 Main products obtained by acid-triggered hydrolysis of P_3 , in which P_4 with cyclic backbone and P_5 with linear backbone have the average number of PEG grafts in the range of 0 and 6.

run	t (h)	C_{MTL}^{b}	$C_{\mathrm{St}}{}^{b}$	$M_{n, GPC} (Da)^c$	Đc	m_{MTL}^{d}	$m_{\rm St}^{d}$	$M_{n,NMR}$ (Da) ^e
1	0.5	0.30	0.012	820	1.08	1.8	2.4	1060
2	1	0.59	0.026	1500	1.09	3.5	5.2	1690
3	1.5	0.84	0.046	2230	1.09	5.0	9.2	2400
4	2	1	0.060	2750	1.10	6	12	2890
5	4	1	0.100	3640	1.10	6	20	3720
6	6	1	0.130	4300	1.09	6	26	4350
7	8	1	0.155	4720	1.09	6	31	4870
8	10	1	0.175	5150	1.09	6	35	5280
9	14	1	0.210	5960	1.07	6	42	6010
10	20	1	0.260	6970	1.08	6	52	7050

Table S1 Results for synthesis of P(St-*co*-MTL) random copolymers and P(St-*co*-MTL)-*b*-PSt diblock copolymers via FBCP-mediated RAFT copolymerization of MTL with St^{*a*}

^{*a*} Polymerization condition: $[St]_0:[MTL]_0:[FBCP]_0:[AIBN]_0 = 200:6:1:0.1, [St]_0 + [MTL]_0 = 3.0 mol L⁻¹, in DMSO-$ *d*₆ at 70 °C. ^{*b*} Monomer conversion determined by ¹H NMR analysis. ^{*c* $} Apparent molar mass (<math>M_{n,GPC}$) and dispersity (Đ) given by GPC analysis. ^{*d*} Number of monomer units determined by ¹H NMR analysis. ^{*e*} Molar mass determined by ¹H NMR analysis.

Fig. S1 Influence of polymerization time on number of monomer unit (m) and monomer conversion (C) during FBCP-mediated RAFT copolymerization of MTL with St. See Table S1 for polymerization conditions.

Fig. S2 GPC traces of linear random and diblock copolymers synthesized by FBCP-mediated RAFT copolymerization of MTL with St. See Table S1 for polymerization conditions.

Fig. S3 FT-IR spectra of various copolymers.

Fig. S4 Dependence of intensity ratios (I_3/I_1) on logarithm of copolymer concentrations in aqueous solution.

Fig. S5 Influence of heat (T = 60 °C, b) and sonication (T = 25 °C, c) for 60 min on TEM images of P₂ assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$, pH = 7.2), in which the original TEM image (a) was listed for comparison.

Fig. S6 Influence of time on DLS plots of P₂ assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed in aqueous solution at pH 7.2 (a) and 3.0 (b-h).

Fig. S7 Influence of time on DLS plots of P₃ assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed in aqueous solution at pH 7.1 (a) and 3.0 (b-h).

Fig. S8 TEM image of P₃ assemblies formed at pH 3.0 ($c_p = 0.5 \text{ mg mL}^{-1}$, t = 2 h).

Fig. S9 Influence of time on DLS plots of P₂ assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed in aqueous solution at pH 7.2 (a) and 10 (b-e).

Fig. S10 Influence of time on DLS plots of P₃ assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed in aqueous solution at pH 7.1 (a) and 10 (b-e).

Fig. S11 ¹H NMR spectra of copolymer mixtures ($R = H \text{ or } CH_3(OCH_2CH_2)_9$ -) obtained by freeze-drying of P₃ assemblies upon acid (pH = 3.0, t = 60 days, a) and base (pH = 10, t = 18 days, b) treatments, followed by precipitation to remove cleaved MPEG.

Fig. S12 DLS plots of copolymer assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed from P₂ and P₃ in aqueous solution upon pH and oxidation stimuli, where the samples upon oxidation of P₂ and P₃ were abbreviated as P₂' and P₃'.

Fig. S13 TEM images of copolymer assemblies ($c_p = 0.5 \text{ mg mL}^{-1}$) formed from P₂' and P₃' in aqueous solution at different pHs (pH \approx 3 (a, d), 7 (b, e) and 10 (c, f)).

Fig. S14 ¹H NMR spectra of P_2 (a) and P_2 ' (b) recorded in CDCl₃, in which the star labeled the signals of CH_2S before and after oxidation, and the signal at 3.20 ppm of P_2 ' was overlapped with other signals.