Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Metal-free polycycloaddition of aldehyde-activated internal diynes and diazides toward post-functionalizable poly(formyl-1,2,3-triazole)s

Baixue Li,[†] Anjun Qin^{*,†} and Ben Zhong Tang^{*,†,‡}

[†]State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China.

[‡]Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Table of Content

Monomer synthesis.	S4
Post-modification model reactions.	S5
Scheme S1 Synthesis of 1a-1b.	S5
Scheme S2 Synthesis of 2a-2d.	S5
Scheme S3 Synthesis of 3-A and 3-B.	S6
Scheme S4 Synthesis of 6-A and 6-B.	S6
Scheme S5 Synthesis of <i>cis</i> -7 and <i>trans</i> -7.	S6
Table S1 Effect of solvent on the polymerization of 1a and 2a.	S6
Table S2 Effect of reaction temperature on the polymerization of 1a and 2a.	S 7
Table S3 Time course of the polymerization of 1a and 2a .	S 7
Table S4 Effect of monomer concentration on the polymerization of 1a and 2a	. S7
Table S5 Crystal data and structure refinement of model compound 3-B.	S 8
Table S6 Crystal data and structure refinement of model compound cis-7.	S9
Table S7 Crystal data and structure refinement of model compound <i>trans</i> -7.	S10
Fig. S1 TGA (A) and DSC (B) curves of P1a2a-P1b2a at a heating rate of 20 °	°C min ⁻
¹ under nitrogen. $T_{\rm d}$ presents temperature of 5% weight loss.	311
Fig. S2 FT-IR spectra of 2b (A), 1a (B) and P1a2b (C).	S11
Fig. S3 FT-IR spectra of 2c (A), 1a (B) and P1a2c (C).	S12
Fig. S4 FT-IR spectra of 2d (A), 1a (B) and P1a2d (C).	S12
Fig. S5 FT-IR spectra of 2a (A), 1b (B) and P1b2a (C).	S13
Fig. S6 ¹³ C NMR spectra of 1a (A), 2a (B), 3-A (C), 3-B (D) and P1a2a	(E) in
CDCl ₃ . The solvent peaks are marked with asterisks.	
S14	
Fig. S7 ¹ H NMR spectra of 1a (A), 2b (B) and P1a2b (C) in CDCl ₃ . The	solvent
peaks are marked with asterisks.	S15
Fig. S8 ¹ H NMR spectra of 1a (A), 2c (B) and P1a2c (C) in CDCl ₃ . The solver	ıt peaks
are marked with asterisks.	S16
Fig. S9 ¹ H NMR spectra of 1a (A), 2d (B) and P1a2d (C) in CDCl ₃ . The	solvent
peaks are marked with asterisks.	S17
Fig. S10 ¹ H NMR spectra of 1b (A), 2a (B) and P1b2a (C) in CDCl ₃ . The	solvent
peaks are marked with asterisks.	S18
Fig. S11 13 C NMR spectra of 1a (A), 2b (B) and P1a2b (C) in CDCl ₃ . The	solvent
peaks are marked with asterisks.	S19

Fig. S12 ¹³C NMR spectra of **1a** (A), **2c** (B) and **P1a2c** (C) in CDCl₃. The solvent peaks are marked with asterisks. S20

Fig. S13 ¹³C NMR spectra of **1a** (A), **2d** (B) and **P1a2d** (C) in CDCl₃. The solvent peaks are marked with asterisks. S21

Fig. S14 ¹³C NMR spectra of **1b** (A), **2a** (B) and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S15 The in situ IR spectra of the polymerization solution of **1a** and **2a** at 150 °C within 3 h. S23

Fig. S16 PL spectra of P**1a2d** in THF and THF/water mixtures with different water fractions. Concentrations: 10^{-5} M, $\lambda_{ex} = 323$ nm. Inset: photograph taken under illumination of hand-held UV lamp. S23

Fig. S17 Changes of PL spectrum (A) and the plot of normalized changes in PL intensity $(1-I/I_0)$ of P**1a2a** treated with hydrazine in THF solutions. S23

Fig. S18 ¹H NMR spectra of P**1a2a** (A), **6**-B (B), **6**-A (C) and **PPM1** (D) in CDCl₃. The solvent peaks are marked with asterisks. S24

Fig. S19 ¹H NMR spectra of P**1a2a** (A), **6**-B (B), **6**-A (C) and **PPM2** (D) in CDCl₃. The solvent peaks are marked with asterisks. S25

Fig. S20 ¹H NMR spectra of P**1a2a** (A), *trans*-7 (B), *cis*-7 (C) and **PPM3** (D) in CDCl₃. The solvent peaks are marked with asterisks. S26

Fig. S21 TGA (A) and DSC (B) curves of P**1a2a** and its derivatives at a heating rate of 20 °C min⁻¹ under nitrogen. T_d presents temperature of 5% weight loss. S27

Fig. S22 UV-vis absorption spectra (A) and PL spectra (B) of P1a2a and PPM3 in THF solutions. Concentrations: 10^{-5} M, $\lambda_{ex} = 323$ nm. Inset: photographs of P1a2a and PPM3 powders (A) and their THF solutions (B) taken under daylight and UV illumination. S27

References

S28

Monomer synthesis. The aldehyde-activated internal diynes, named 3,3'-(9,9-dibutyl-9H-fluorene-2,7-diyl)dipropiolaldehyde (**1a**) and 3,3'-(9,9-dimethyl-9H-fluorene- 2,7-diyl)dipropiol-aldehyde (**1b**) were prepared according to the published procedures.^{1,2} The azides monomers, 1,4-bis((6-azidohexyl)oxy)benzene (**2a**), 1,2-bis(4-(azidomethyl)phenyl)-1,2-diphenylethene (**2b**), bis(4-azidophenyl)- methane (**2c**) and 1,2-bis(4-((6-azidohexyl) oxy)phenyl)-1,2-diphenylethene (**2d**) were prepared according to the previous reports.³⁻⁶ The detailed synthetic routes are shown in Schemes S1 and S2.

3,3'-(9,9-Dibutyl-9H-fluorene-2,7-diyl)dipropiolaldehyde (1a): ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 9.46, 7.77, 7.75, 7.64, 7.61, 1.99, 1.10, 0.68, 0.55. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 176.77, 151.89, 142.97, 132.92, 128.08, 121.03, 118.98, 96.01, 89.39, 55.62, 39.98, 26.04, 23.05, 13.90.

3,3'-(9,9-Dimethyl-9H-fluorene-2,7-diyl)dipropiolaldehyde (1b): ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 9.45, 7.78, 7.76, 7.70, 7.65, 7.63, 1.51. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 176.74, 154.58, 141.11, 133.06, 128.05, 121.28, 119.16, 95.75, 89.33, 47.34, 26.84.

1,4-Bis((6-azidohexyl)oxy)benzene (2a): ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 6.81, 3.90, 3.27, 1.77, 1.62, 1.46. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 153.23, 115.30, 68.36, 51.37, 29.32, 28.77, 26.63, 25.77.

1,2-Bis(4-(azidomethyl)phenyl)-1,2-diphenylethene (2b): ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 7.11, 7.03, 4.26. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 143.77, 143.26, 140.81, 133.53, 131.83, 131.24, 128.02, 126.83, 54.62.

Bis(4-azidophenyl)methane (2c): ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 7.14, 6.96, 3.92. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 138.26, 137.76, 130.22, 119.47, 40.82.

1,2-Bis(4-((6-azidohexyl)oxy)phenyl)-1,2-diphenylethene (2d): ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 7.12-7.00, 6.94-6.89, 6.65-6.60, 3.90-3.86, 3.29-3.26, 1.78-1.73, 1.66-1.60, 1.50-1.43. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 157.58, 144.41, 139.77, 136.43, 132.64, 131.54, 127.68, 126.28, 113.66, 67.63, 51.54, 31.08, 29.31, 28.94, 26.68, 25.87.

Post-modification model reactions. Compounds **6**-A/**6**-B and cis-7/trans-7 were prepared according to the published procedures.^{7,8} The detailed synthetic routes are shown in Scheme S4 and S5.

6-A: ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 8.43, 7.49-6.61, 5.51, 2.57, 2.49, 1.56, 1.29, 1.25, 0.87.

6-B: ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 8.51, 7.69-6.64, 6.17, 2.62, 2.49, 1.62, 1.26, 0.88.

cis-**7**: ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 7.52-7.45, 7.27, 7.15-7.05, 6.76 (d, *J*=12 Hz, 1H), 5.41 (d, *J*=12 Hz, 1H).

trans-7: ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 7.54-7.49, 7.28, 7.15-7.03, 6.28 (d, *J*=16 Hz, 1H).

Scheme S1 Synthesis of 1a and 1b.

Scheme S2 Synthesis of 2a-2d.

Scheme S3 Synthesis of 3-A and 3-B.

Scheme S4 Synthesis of 6-A and 6-B.

Scheme S5 Synthesis of cis-7 and trans-7.

entry	solvent	yield (%)	$M_{ m w}{}^b$	PDI^b	$F_{\mathrm{A}^{c}}$ (%)
1	DMSO	85	16 360	1.55	71
2	DMF	80	14 580	1.48	68
3	1,4-dioxane	79	12 950	1.41	64
4	toluene	71	15 300	1.47	61

Table S1 Effect of solvent on the polymerization of 1a and $2a^a$

^{*a*} Carried out at 120 °C for 3 h under nitrogen at a monomer concentration of 0.5 M, [1a] = [2a]. ^{*b*} Estimated by advanced polymer chromatography (APC) using THF as an eluent on the basis of a polystyrene (PS) calibration; M_w = weight-average molecular weight; polydispersity index (PDI) = M_w/M_n ; M_n = number-average molecular weight. ^{*c*} Fraction of structure A in the polymers determined by ¹H NMR.

entry	<i>T</i> (°C)	yield (%)	$M_{ m w}{}^b$	PDI^b
1	80	52	4410	1.22
2	100	63	11 090	1.37
3	120	80	15 190	1.48
4	140	87	43 350	2.09
5	150	83	53 110	2.55

Table S2 Effect of reaction temperature on the polymerization of 1a and $2a^a$

^{*a*} Carried out in DMSO for 3 h under nitrogen at a monomer concentration of 0.5 M, [1a] = [2a]. ^{*b*} Estimated by APC using THF as an eluent on the basis of a PS calibration; $M_{\rm w}$ = weight-average molecular weight; PDI = $M_{\rm w}/M_{\rm n}$; $M_{\rm n}$ = number-average molecular weight.

Table S3 Time course of the polymerization of 1a and $2a^a$

entry	<i>t</i> (h)	yield (%)	$M_{ m w}{}^b$	PDI ^b
1	1.0	76	23 440	1.71
2	1.5	88	48 920	2.21
3	2.0	89	54 550	2.29
4	3.0	90	58 690	2.39

^{*a*} Carried out in DMSO at 150 °C under nitrogen at a monomer concentration of 0.5 M, [1a] = [2a]. ^{*b*} Estimated by APC using THF as an eluent on the basis of a PS calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight.

entry	<i>C</i> (M)	yield (%)	$M_{ m w}{}^b$	PDI^b
1	0.10	75	9730	1.33
2	0.20	80	18 470	1.59
3	0.33	85	37 420	1.94
4^c	0.50	89	54 550	2.29
5	1.00	gelled	-	-

Table S4 Effect of monomer concentration on the polymerization of 1a and $2a^a$

^{*a*} Carried out in DMSO at 150 °C under nitrogen for 2 h, [1a] = [2a]. ^{*b*} Estimated by APC using THF as an eluent on the basis of a PS calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight. ^{*c*} Data taken from Table S3, entry 3.

 Table S5 Crystal data and structure refinement of model compound 3-B

Number	CCDC 1958959
Empirical formula	C ₁₆ H ₁₃ N ₃ O
Formula weight	263.29
Temperature	120(10) K
Wavelength	1.54184 Å
Crystal system	monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$a = 13.1254(7) \text{ Å} \alpha = 90.00 \text{ °}$
	$b = 8.1029(4) \text{ Å}$ $\beta = 109.249 \text{ °}$
	$c = 12.6860(7) \text{ Å} \gamma = 90.00 \text{ °}$
Volume	1273.78(12) Å ³
Ζ	4
Density (calculated)	1.373 mg/m ³
Absorption coefficient	0.713 mm ⁻¹
F(000)	552
Crystal size	$0.07\times0.05\times0.05\ mm^3$
Theta range for data collection	3.567 to 67.097 °
Index ranges	-15<=h<=14, -6<=k<=9, -14<=l<=15
Reflections collections	5898
Independent reflections	2269 [R(int) = 0.0240]
Completeness to theta = 66.97°	99.9%
Absorption correction	multi-scan
Max. and min. transmission	1.00000 and 0.71569
Data / restraints / parameters	2269 / 0 / 181
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0437, wR2 = 0.1074
R indices (all data)	R1 = 0.0450, wR2 = 0.1083
Largest diff. peak and hole	0.256 and -0.397 e.Å ⁻³

 Table S6 Crystal data and structure refinement of model compound cis-7

Number	CCDC 1958962
Empirical formula	$C_{18}H_{14}N_4$
Formula weight	286.33
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	$a = 9.1045(15) \text{ Å}$ $\alpha = 110.846 \text{ °}$
	$b = 9.4078(14) \text{ Å} \beta = 92.668 \text{ °}$
	$c = 9.9658(17) \text{ Å} \gamma = 107.055 \text{ °}$
Volume	751.7(2) Å ³
Ζ	2
Density (calculated)	1.265 mg/m ³
Absorption coefficient	0.078 mm ⁻¹
F(000)	300
Crystal size	$0.22\times0.19\times0.16\ mm^3$
Theta range for data collection	2.79 to 25.10 °
Index ranges	-10<=h<=10, -11<=k<=11, -11<=l<=11
Reflections collections	10178
Independent reflections	2573 [R(int) = 0.0586]
Completeness to theta = 25.10°	95.9%
Absorption correction	multi-scan
Max. and min. transmission	0.9876 and 0.9830
Data / restraints / parameters	2573 / 0 / 199
Goodness-of-fit on F ²	1.001
Final R indices [I>2sigma(I)]	R1 = 0.0679, WR2 = 0.1817
R indices (all data)	R1 = 0.0944, wR2 = 0.1939

 Table S7 Crystal data and structure refinement of model compound trans-7

Number	CCDC 1958961
Empirical formula	$C_{18}H_{14}N_4$
Formula weight	286.33
Temperature	300(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 11.0650(8) \text{ Å}$ $\alpha = 90.00 \text{ °}$
	b = 15.5926(12) Å β = 108.433 °
	$c = 9.3078(6) \text{ Å} \gamma = 90.00 \text{ °}$
Volume	1523.50(19) Å ³
Ζ	4
Density (calculated)	1.248 mg/m ³
Absorption coefficient	0.077 mm ⁻¹
F(000)	600
Crystal size	$0.24\times0.18\times0.15\ mm^3$
Theta range for data collection	2.61 to 26.00 °
Index ranges	-13<=h<=13, -19<=k<=19, -11<=l<=11
Reflections collections	18156
Independent reflections	2989 [R(int) = 0.0540]
Completeness to theta = 26.00°	99.5%
Absorption correction	multi-scan
Max. and min. transmission	0.9885 and 0.9817
Data / restraints / parameters	2989 / 0 / 199
Goodness-of-fit on F ²	1.005
Final R indices [I>2sigma(I)]	R1 = 0.0537, WR2 = 0.1403
R indices (all data)	R1 = 0.0821, WR2 = 0.1721

Fig. S1 TGA (A) and DSC (B) curves of P**1a2a**-P**1b2a** at a heating rate of 20 °C min⁻¹ under nitrogen. T_d presents temperature of 5% weight loss.

Fig. S2 FT-IR spectra of 2b (A), 1a (B) and P1a2b (C).

Fig. S3 FT-IR spectra of 2c (A), 1a (B) and P1a2c (C).

Fig. S4 FT-IR spectra of 2d (A), 1a (B) and P1a2d (C).

Fig. S5 FT-IR spectra of 2a (A), 1b (B) and P1b2a (C).

Fig. S6 ¹³C NMR spectra of **1a** (A), **2a** (B), **3**-A (C), **3**-B (D) and **P1a2a** (E) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S7 ¹H NMR spectra of **1a** (A), **2b** (B) and P**1a2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S8 ¹H NMR spectra of **1a** (A), **2c** (B) and P**1a2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S9 ¹H NMR spectra of **1a** (A), **2d** (B) and P**1a2d** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S10 ¹H NMR spectra of **1b** (A), **2a** (B) and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S11 ¹³C NMR spectra of **1a** (A), **2b** (B) and P**1a2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S12 ¹³C NMR spectra of **1a** (A), **2c** (B) and P**1a2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S13 ¹³C NMR spectra of **1a** (A), **2d** (B) and P**1a2d** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S14 ¹³C NMR spectra of **1b** (A), **2a** (B) and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S15 The in situ IR spectra of the polymerization solution of **1a** and **2a** at 150 °C within 3 h.

Fig. S16 PL spectra of P**1a2d** in THF and THF/water mixtures with different water fractions. Concentrations: 10^{-5} M, $\lambda_{ex} = 323$ nm. Inset: photograph taken under illumination of hand-held UV lamp.

Fig. S17 Changes of PL spectrum (A) and the plot of normalized changes in PL intensity $(1-I/I_0)$ of P**1a2a** treated with hydrazine in THF solutions.

Fig. S18 ¹H NMR spectra of P1a2a (A), 6-B (B), 6-A (C) and PPM1 (D) in CDCl₃. The solvent peaks are marked with asterisks.

The grafting degree of **PPM1** is arranged as *x*, then un-reacted part accounts for (1-*x*), $\frac{2x}{1.81} = \frac{1.81}{1.81}$

$$\frac{1}{18x + 10(1 - x)} = \frac{1}{20.89}$$
$$x = 0.657$$

Fig. S19 ¹H NMR spectra of P1a2a (A), 6-B (B), 6-A (C) and PPM2 (D) in $CDCl_3$. The solvent peaks are marked with asterisks.

The grafting degree of **PPM2** is arranged as *x*, then un-reacted part accounts for (1-*x*), $\frac{2x}{1.96} = \frac{1.96}{1.96}$

$$\frac{1}{18x + 10(1 - x)} = \frac{1}{30.94}$$
$$x = 0.424$$

Fig. S20 ¹H NMR spectra of P**1a2a** (A), *trans*-7 (B), *cis*-7 (C) and **PPM3** (D) in CDCl₃. The solvent peaks are marked with asterisks.

The grafting degree of **PPM3** is arranged as *x*, then un-reacted part accounts for (1-*x*), 4x = 3.99

 $\overline{4} = \overline{4.05}$

x = 0.985

Fig. S21 TGA (A) and DSC (B) curves of P**1a2a** and its derivatives at a heating rate of 20 °C min⁻¹ under nitrogen. T_d presents temperature of 5% weight loss.

Fig. S22 UV-vis absorption spectra (A) and PL spectra (B) of P1a2a and PPM3 in THF solutions. Concentrations: 10^{-5} M, $\lambda_{ex} = 323$ nm. Inset: photographs of P1a2a and PPM3 powders (A) and their THF solutions (B) taken under daylight and UV illumination.

References

- (1) X. Lang, F. You, X. He, Y. Yu and L. He, Green Chem., 2019, 21, 509-514.
- (2) J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901-16910.
- (3) Y. Liu, J. Wang, D. Huang, J. Zhang, S. Guo, R. Hu, Z. Zhao, A. Qin and B. Z. Tang, *Polym. Chem.*, 2015, **6**, 5545–5549.
- (4) A. Qin, L. Tang, J. W. Y. Lam, C. K. W. Jim, Y. Yu, H. Zhao, J. Z. Sun and B. Z. Tang, *Adv. Funct. Mater.*, 2009, **19**, 1891–1900.
- (5) Y. Zhao and T. M. Swager, Eur. J. Org. Chem., 2015, 2015, 4593-4597.
- (6) W. Chi, W. Yuan, J. Du, T. Han, H. Li, Y. Li and B. Z. Tang, *Macromol. Rapid Commun.*, 2018, **39**, 1800604.
- (7) Y. Wang, W. Wang, X. Wang, X. Cheng, A. Qin, J. Z. Sun and B. Z. Tang, *Polym. Chem.*, 2017, **8**, 5546–5553.
- (8) Y. Hu, J. Zhu, K. H. Chan and Y. H. Wong, *Bioorg. Med. Chem.*, 2013, **21**, 547–552.