Supporting Information

# Synthesis of fused conjugated polymers containing imidazo[2,1b]thiazole units by multicomponent one-pot polymerization

Ru Dong,<sup>a</sup> Qi Chen,<sup>a</sup> Xuediao Cai,<sup>\*,a,</sup> Qi Zhang,<sup>a,\*</sup> Zhike Liu<sup>b</sup>

- a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, 710119 Xi'an, P. R. China
- b Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, 710119 Xi'an, P. R. China

# Table of contents

| 1. Materials and Methods                        | 3  |
|-------------------------------------------------|----|
| 2. Synthesis of monomer M <sub>1</sub>          | 3  |
| 3. Synthesis and Optical Properties of polymers | 8  |
| 4. TGA curve of polymers                        | 21 |
| 5. Cyclic voltammogram of polymers              | 21 |

#### 1. Materials and Methods

Benzidine (Energy Chemical, 98%); Ammonium thiocyanate (Energy Chemical, 99%); 1,4-Phthalaldehyde (Energy Chemical, 98%); 2,5-Thiophenedicarboxaldehyde (Aladdin, 95%); 1- Ethynyl-4- hexylbenzene (TCI, >95%); Phenylpropiolic acid (Energy Chemical, 97%), Ethyl propiolate (Energy Chemical, 98%) and Copper(I) iodide were used without further purification. All reagents and solvents were obtained commercially and used received without further purification. as Columnchromatography was performed on silica gel (Qingdao Haiyang Chemical Co., LTD, 200-300 mesh). <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded with Bruker AVANCE-400 spectrometer using CDCl<sub>3</sub> or DMSO-d<sub>6</sub> as solvent. High-resolution mass spectra were recorded on a Bruker Impact mass spectrometer. FT-IR spectra were measured on a Tensor 27 spectrophotometer. Thermogravimetric analysis (TGA) measurements were performed under nitrogen flow using а Q1000DSC+LNCS+FACSQ600SDT Instruments with a heating rate of 20°C /min from ambient temperature to 600°C. UV-Vis spectra of the copolymers were obtained on U-3900/3900H spectrometer. Photoluminescence (PL) spectra of the polymers were obtained on F-7000 luminescence spectrometer. Cyclic voltammetry (CV) was conducted on an electrochemistry workstation (CHI 660A, Chenhua Shanghai). The average molecular weight and polydispersity index (PDI) of the polymers were determined using Viscotek gel permeation chromatography (GPC) analysis with THF as the eluent and polystyrene as the standard.

#### 2. Synthesis of monomer M<sub>1</sub>

$$H_2N \longrightarrow NH_2 + NH_4SCN \xrightarrow{HCl, H_2O} S \xrightarrow{H}_{NH_2} NH_2 \xrightarrow{H}_{NH_2} NH_2$$

Synthesis of compound:

Compound (C<sub>1</sub>)

$$H_2N \longrightarrow NH_2 + NH_4SCN \xrightarrow{HCl, H_2O} S \xrightarrow{H}_{NH_2} NH_2 \xrightarrow{H}_{NH_2} NH_2$$

Benzidine (1.0 g, 0.005 mol) and HCl (3 mL) were added to a 50 mL flask and stirred at 50 °C until they were completely dissolved. Then, saturated NH<sub>4</sub>SCN (2.0 g, 0.025 mol) aqueous solution was added. Then, the mixture was refluxed at 80 °C for 4 h till a light yellow, and continued to reflux for 48 h. After the reaction is finished, cooling to room temperature, dropwise adding NaOH solution to adjust the pH = 7-8, then filtering, washing (hot water washing for three times) and drying to obtain light yellow solid (5.6 g, 91.1%). <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>)  $\delta$ (ppm) 9.73(s, 2H), 7.57(d, J=8.0HZ, 4H), 7.44(d, J=8.0HZ, 4H). <sup>13</sup>C NMR (100MHz)  $\delta$ (ppm) 181.40, 138.87, 135.90, 127.04, 123.71. FT-IR (KBr) 3384, 3260, 3028, 1620, 1500, 1406, 1244, 1178, 811.



Fig. S1. <sup>1</sup>H NMR spectrum of C<sub>1</sub> measured in DMSO-d<sub>6</sub>.



Fig. S2.  $^{13}$ C NMR spectrum of C<sub>1</sub> measured in DMSO-d<sub>6</sub>.



Fig. S3. FI-IR spectrum of C<sub>1</sub>.

Monomer (M<sub>1</sub>)



C<sub>1</sub> (1.0 g, 0.003 mol) was placed in a 50 mL flask, then H<sub>2</sub>SO<sub>4</sub> (1.76 mL, 0.03 mol) was added and stirred at 50 °C. NaBr (0.136 g, 0.0012mol) were added in batches and reacted at 80 °C for 14 h. The reaction solution was poured into cold water, NaOH is added to adjust the pH = 7-8, the reaction solution is cooled to room temperature, filtering and drying to obtain grayish yellow solid (2.92 g, 98.1%). <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>)  $\delta$ (ppm) 8.01(d, J=18.4HZ, 2H), 7.57(d, J=10.8HZ, 2H), 7.43(d, J=11.2HZ, 2H), 4.31(s, 4H). <sup>13</sup>C NMR (100MHz)  $\delta$ (ppm) 167.78, 149.51, 134.28, 130.96, 125.09, 119.68, 117.68. FT-IR (KBr) 3373, 3097, 1645, 1448, 1099, 813. ESI calcd for C<sub>14</sub>H<sub>10</sub>N<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup> 299.0425, found 299.0423.



Fig. S4. <sup>1</sup>H NMR spectrum of M<sub>1</sub> measured in DMSO-d<sub>6</sub>.



Fig. S5. <sup>13</sup>C NMR spectrum of  $M_1$  measured in DMSO-d<sub>6</sub>.



Fig. S6. IR spectrum of M<sub>1</sub>.



Fig. S7. High-resolution mass spectra of M<sub>1</sub>.

#### 3. Synthesis and Optical Properties of polymers

#### **General polymerization:**

All the polymerizations were conducted under argon and anhydrous conditions. To a flask charged with monomer in anhydrous DMSO solution, CuI and  $K_2CO_3$  were added to the solution. The reaction mixture was tightly sealed and heated at 80 °C for 72 h. **P1-P2:** After cooling, the mixture was poured into CH<sub>2</sub>Cl<sub>2</sub> (30 mL), washed with water (2×10 mL), saturated aqueous NH<sub>4</sub>Cl (3×10 mL) and brine (2×10 mL), subsequenly, the organic solvent was dried with Mg<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure to obtain the crude product. Finally, the crude product is dissolved in THF and dialyzed to obtain the target polymer.

**P3-P6:** After cooling, the mixture was poured into cold water (100 mL) and solids precipitated. The solid crude product was dissolved in THF, and the pure product was obtained after dialysis treatment.



Polymer **P1** was obtained as tan powder in 54.3% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 8.10-7.25(22H, ArH), 4.29(s, 4H, CH<sub>2</sub>), 2.69-2.65(m, 8H, CH<sub>2</sub>), 1.58-1.55(m, 8H, CH<sub>2</sub>), 1.32-1.24(m, 8H, CH<sub>2</sub>), 0.96-0.87(t, 6H, CH<sub>3</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 144.4, 140.5, 136.2, 133.7, 129.6, 128.0, 126.0, 124.9, 121.1, 115.0, 103.5, 41.7, 39.5, 34.02, 28.9, 27.5, 21.7. FT-IR (KBr) 3031, 2923, 2852, 2729, 1604, 1465, 1207, 1122, 1014, 817.



Fig. S8. <sup>1</sup>H NMR spectrum of **P1** measured in CDCl<sub>3</sub>.



Fig. S9. <sup>13</sup>C NMR spectrum of **P1** measured in CDCl<sub>3</sub>.



Fig. S10. IR spectrum of P1.



Fig. S11. UV-Vis absorption and Photoluminescence spectra of P1 in THF solution.

Polymer (P2)



Polymer **P2** was obtained as tan powder in 58.9% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 8.03-7.06(18H, ArH), 4.62(s, 4H, CH<sub>2</sub>), 2.63-2.55(m, 8H, CH<sub>2</sub>), 1.55-1.51(m, 8H, CH<sub>2</sub>), 1.23-1.19(m, 8H, CH<sub>2</sub>), 0.81-0.77(t, 6H, CH<sub>3</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 141.0, 136.0, 135.5, 134.5, 132.5, 126.7, 122.9, 122.6, 39.6, 33.2, 25.3, 25.0. FT-IR (KBr) 2930, 2862, 2725, 1701, 1606, 1465, 1261, 1099, 1018, 833.



Fig. S12. <sup>1</sup>H NMR spectrum of **P2** measured in CDCl<sub>3</sub>.



Fig. S13. <sup>13</sup>C NMR spectrum of **P2** measured in CDCl<sub>3</sub>.



Fig. S14. IR spectrum of P2.



Fig. S15. UV-Vis absorption and Photoluminescence spectra of P2 in THF solution.

Polymer (P3)



Polymer **P3** was obtained as yellow powder in 45.4% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 8.13-7.29(14H, ArH), 4.32(s, 4H, CH<sub>2</sub>), 4.13-4.09(m, 4H, CH<sub>2</sub>), 1.22-1.18(t, 6H, CH<sub>3</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 166.2, 162.8, 154.8, 150.2, 133.2, 133.0, 130.0, 127.8, 127.4, 124.3. FT-IR (KBr) 2985, 2902, 2827, 2735, 1720, 1607, 1271, 1219, 1166, 1039, 985, 825.







Fig. S17. <sup>13</sup>C NMR spectrum of **P3** measured in CDCl<sub>3</sub>.



Fig. S18. IR spectrum of P3.



Fig. S19. UV-Vis absorption and Photoluminescence spectra of P3 in THF solution.

Polymer (P4)



Polymer **P4** was obtained as yellow powder in 47.3% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 8.41-7.30(10H, ArH), 4.32(s, 4H, CH<sub>2</sub>), 4.23-4.18(m, 4H, CH<sub>2</sub>), 1.22-1.88(t, 6H, CH<sub>3</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 170.7, 152.9, 144.9, 137.5, 137.0, 134.00, 132.8, 128.5, 126.0, 125.3, 121.6, 120.4, 119.3, 119.0, 70.3, 59.8, 46.0, 37.6, 26.3, 13.2. FT-IR (KBr) 2979, 2933, 2862, 1722, 1637, 1537, 1444, 1373, 1205, 1026, 810.



Fig. S20. <sup>1</sup>H NMR spectrum of **P4** measured in CDCl<sub>3</sub>.



Fig. S21 <sup>13</sup>C NMR spectrum of **P4** measured in CDCl<sub>3</sub>.



Fig. S22. IR spectrum of P4.



Fig. S23. UV-Vis absorption and Photoluminescence spectra of P4 in THF solution.

Polymer (P5)



Polymer **P5** was obtained as yellow powder in 44.9% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 7.91-7.22(24H, ArH), 4.02(s, 4H, CH<sub>2</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 151.6, 137.6, 135.3, 131.0, 128.9, 124.1, 124.1, 119.2, 118.9, 117.1, 117.0. FT-IR (KBr) 3080, 2920, 1701, 1625, 1446, 1299, 1186, 1107, 1107, 817.



Fig. S24. <sup>1</sup>H NMR spectrum of P5 measured in CDCl<sub>3</sub>.



Fig. S25. <sup>13</sup>C NMR spectrum of **P5** measured in CDCl<sub>3</sub>.



Fig. S26. IR spectrum of P5.



Fig. S27. UV-Vis absorption and Photoluminescence spectra of P5 in THF solution.

Polymer (P6)



Polymer **P6** was obtained as yellow powder in 47.7% yield. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ(ppm) 8.02-7.18(20H, ArH), 4.12(s, 4H, CH<sub>2</sub>). <sup>13</sup>C NMR (100MHz) δ(ppm) 155.0, 140.4, 137.6, 135.1, 130.4, 129.4, 128.8, 128.6, 128.0, 126.3, 121.8, 119.2, 110.4, 63.6, 28.3. FT-IR (KBr) 2962, 2921, 2852, 1718, 1604, 1244, 1174, 1107, 1020, 833.



Fig. S28. <sup>1</sup>H NMR spectrum of **P6** measured in CDCl<sub>3</sub>.



Fig. S29.  $^{13}\text{C}$  NMR spectrum of P6 measured in CDCl\_3.



Fig. S30. IR spectrum of P6.



Fig. S31. UV-Vis absorption and Photoluminescence spectra of P6 in THF solution.

### 4. TGA curve of polymers



Fig. S32. TGA curve of polymers P1-P6 with a scan rate of 20°C /min under nitrogen atmosphere.



## 5. Cyclic voltammogram of polymers

Fig. S33. Cyclic voltammogram of the P1-P6 on glassy carbon electrode in 0.1 mol/L  $Bu_4NPF_6$ THF solution.