Electronic Supplementary Information

Bis(*N*-acylated imidazolin-2-imine) Nickel Catalyzed Norbornene Copolymerization

with Methyl Acrylate

Yanqing Li^{a, b}, Hu Zhang^a, Ru Xiao^{a*} and Zhengguo Cai^{a*}

 ^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
 ^b College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China

Contents

1. Synthetic Procedure	1
1.1 Synthesis of N-acylated imidazolin-2-imine ligands (L1-L4)	and NMR
spectra of compounds	1
1.2 ¹ H NMR spectra of nickel complexes	12
2. Crystal data and structure refinement for complexes Ni1-Ni4	14
3. NMR spectra, GPC curves and DSC curves of NB-HAc copolymers.	16
3.1. Microstructure of NB-HAc copolymer	16
3.2. HAc incorporation in NB-HAc copolymers obtained by Ni1-Ni4	17
4.3. GPC curves of NB-HAc copolymers	19
3.4. DSC curves of NB-HAc copolymers	20
4. NMR spectra, GPC curves and DSC curves of NB-AAc copolymers.	22
4.1. Microstructure of NB-AAc copolymer	22
4.2. AAc incorporation in NB-AAc copolymers obtained by Ni1-Ni4	23
4.3. GPC curves of NB-AAc copolymers	25
4.4. DSC curves of NB-AAc copolymers	26
5. NMR spectra, GPC curves and DSC curves of NB-MA copolymers	
5.1. Microstructure of NB-MA copolymer	28
5.2. MA incorporation in NB-MA copolymers obtained by Ni1-Ni4	29
5.3. GPC curves of NB-MA copolymers	
5.4. DSC curves of NB-MA copolymers	

1. Synthetic Procedure

1.1 Synthesis of *N*-acylated imidazolin-2-imine ligands (L1-L4) and NMR spectra of compounds

Scheme S1. Synthesis of Mono-substituted *N*-acylated imidazolin-2-imine Ligands (L1-L2)

Synthesis of 2-amino-1*H*-imidazole hemisulfate (1): A 250 mL two-neck flask was charged with 2-aminoacetaldehyde dimethyl acetal (5.56 mL, 50 mmol), O-methylisourea hemisulfate (6.25 g, 50 mmol) and 30 mL water, and stirred for 1 h at room temperature. The temperature was then elevated up to 50 °C and kept for 5 h. Subsequently, the 10 mL of concentrated hydrochloric acid was introduced, and the mixture was heated to 90 °C for another 10 h. The solvent was evaporated, and the solid was dissolved in a mixed solution of ethanol and water (volume ratio, 1:1) and crystallized under minus 20 degrees Celsius to get a white crystal (4.95 g, 37.46 mmol, 74.92%). ¹H NMR (D₂O, δ , ppm): 6.73 (s, 2H, =CH). ¹³C NMR (D₂O, δ , ppm): 146.55, 112.83.

Synthesis 1-phenyl-1*H*-imidazol-2-amine of (2): 2-Amino-1*H*-imidazole hemisulfate (5.29 g, 40 mmol) was dissolved in H₂O and neutralized with 1 mol/L NaOH, and dried under vacuum. The precipitate was collected and mixtured with Cs₂CO₃ (19.75 g, 60 mmol), CuI (0.78 g, 4 mmol) and 8-hydroxyquinoline (0.89 g, 6 mmol), and anhydrous t-BuOH (80 mL), and iodobenzene (4.55 mL, 40 mmol) were injected in turn into the mixture solution. The solution was heated up to 80 °C and maintained with stirring. After 20 h, the solvent was removed under vacuum, and the product was extracted using EtOAc (3×50 mL) and the organic layer was filtered through a 0.45 µm millipore membrane filter. The EtOAc was evaporated in vacuo, the crude products were purified by recrystallization in a mixture of toluene and hexane (4.58 g, 28.81 mmol, 72.02%). ¹H NMR (DMSO, δ, ppm): 7.46-7.50 (m, 5H, =CH, -NH), 7.36 (t, 1H, =CH), 6.93 (s, 1H, =CH), 6.63 (s, 1H, =CH), 5.46 (s, 2H, -

NH₂). ¹³C NMR (DMSO, δ, ppm): 149.57, 138.05, 130.03, 127.17, 125.37, 124.38, 116.32.

Synthesis of 2-acetamido-4-phenyl-1*H*-imidazole (3). A 250 mL oven-dried flask was charged with 2-bromoacetophenone (4.02 g, 20 mmol) and 1-acetylguanidine (6.19 g, 60 mmol) in 40 mL acetonitrile, and the solution was then refluxed at 85 °C for 19 h. As the reaction was complete, the solvent was removed under vacuum. Purification of the resulting material by recrystallization in a mixture of THF and hexane afforded a white solid (1.35 g, 6.71 mmol, 33.55%). ¹H NMR (DMSO, δ , ppm): 11.64 (s, 1H, -NH), 11.28 (s, 1H, -NH), 7.64 (d, 2H, =CH), 7.54 (bs, 2H, -NH₂), 7.45 (t, 2H, =CH), 7.43 (s, 1H, =CH), 7.34 (t, 1H, =CH). ¹³C NMR (DMSO, δ , ppm): 148.24, 129.42, 128.42, 128.18, 126.89, 124.50, 110.02.

Synthesis of 2-amino-4-phenyl-1*H*-imidazole sulfate (4). 2-Acetamido-4-phenyl-1*H*-imidazole (2.01 g, 10 mmol) was dissolved in a mixture solution of methanol and water (60 mL, volume ratio=1:1), and 0.60 mL of concentrated sulfuric acid was added. The mixture solution was subsequently heated and stirred at 100 °C for 16 h. After cooling to 0 °C °C, the colorless crystal was obtained at high yield (2.47 g, 9.60 mmol, 96.01%). ¹H NMR (DMSO, δ , ppm): 12.68 (s, 1H, -NH), 12.06 (s, 1H, -NH), 7.64 (D, 2H, =CH), 7.32 (t, 2H, =CH), 7.26 (s, 1H, =CH), 7.16 (t, 1H, =CH), 2.07 (s, 3H, -CH₃). ¹³C NMR (DMSO, δ , ppm): 169.01, 141.72, 136.54, 135.14, 128.87, 126.34, 124.40, 109.67, 23.28.

Synthesis of 1,4-diphenyl-1*H***-imidazol-2-amine (5).** 1,4-Diphenyl-1*H*-imidazol-2amine was synthesized in a similar method producing 1-phenyl-1*H*-imidazol-2-amine. The general procedure using 2-amino-4-phenyl-1*H*-imidazole sulfate (2.57, 10 mmol) provided a white solid that crystallized from CH₂Cl₂ to yield a colorless crystal (1.28 g, 5.44 mmol, 54.40%). ¹H NMR (CDCl₃, δ, ppm): 7.74 (d, 2H, =CH), 7.54 (t, 2H, =CH), 7.48 (d, 2H, =CH), 7.43 (t, 1H, =CH), 7.38 (t, 2H, =CH), 7.24 (t, 2H, =CH), 7.06 (bs, 2H, -NH₂). ¹³C NMR (CDCl₃, δ, ppm): 147.55, 137.73, 136.89, 133.93, 129.98, 128.55, 127.97, 126.56, 124.65, 124.43, 111.47.

Synthesis of *N*-(1-phenyl-1*H*-imidazol-2-yl)benzamide ligand (L1). 1-Phenyl-1*H*imidazol-2-amine (1.59 g, 10 mmol) was dissolved in dichloromethane (60 mL) in a 250 mL flask and triethylamine (1.50 mL, 11 mmol) was added, and then benzoyl chloride (1.16 mL, 10 mmol) was injected with a syringe. After stirring for 10 h at 25 °C, the mixture solution was removed under vacuum. The crude product was purified by silica gel column chromatography (eluent: EtOAC/Hexane=1:3) to give L1 (2.03 g, 77%). ¹H NMR (CDCl₃, δ , ppm): 12.61 (brs, 1H, -NH), 8.22 (d, 2H, =CH), 7.71 (d, 2H, =CH), 7.54 (t, 2H, =CH), 7.46 (t, 1H, =CH), 7.40 (q, 4H, =CH), 6.88 (d, 2H, =CH). ¹³C NMR (CDCl₃, δ , ppm): 174.57, 149.75, 137.85, 136.60, 130.90, 129.18, 128.87, 127.92, 127.61, 124.59, 114.87, 113.16.

Synthesis of *N*-(**1**-phenyl-1*H*-imidazol-2-yl) adamantanecarboxamide ligand (L2). L2 was synthesized in a similar way to that for L1 in 71% yield. ¹H NMR (DMSO, δ, ppm): 9.44 (s, 1H, -NH), 7.48 (t, 2H, =CH), 7.36-7.40 (m, 4H, =CH), 6.99 (s, 1H, =CH), 1.94 (s, 3H, -CH₂), 1.70 (s, 6H, -CH) , 1.65 (q, 6H, -CH₂). ¹³C NMR (DMSO, δ, ppm): 178.06, 138.44, 137.23, 129.53, 128.08, 126.85, 124.75, 121.00, 40.67, 38.70, 36.43, 27.96.

Synthesis of *N*-(1,4-diphenyl-1*H*-imidazol-2-yl)benzamide ligand (L3). L3 was synthesized in a similar way to that for L1 in 63% yield. ¹H NMR (CDCl₃, δ, ppm): 7.83 (d, 2H, =CH), 7.67 (d, 4H, =CH), 7.47 (t, 2H, =CH), 7.42 (t, 2H, =CH), 7.39 (t, 2H, =CH), 7.34 (s, 1H, -NH), 7.33 (d, 2H, =CH), 7.19 (d, 2H, =CH). ¹³C NMR (DMSO, δ, ppm): 171.95, 141.13, 138.95, 135.55, 133.58, 133.46, 132.80, 129.60, 129.29, 128.91, 128.61, 128.40, 127.31, 125.08, 125.02, 116.23.

Synthesis of *N*-(1,4-diphenyl-1*H*-imidazol-2-yl)adamantanecarboxamide ligand (L4). L4 was synthesized in a similar way to that for L1 in 66% yield. ¹H NMR (CDCl₃, δ, ppm): 11.04 (b, 1H, -NH), 7.90 (s, 2H, =CH), 7.49 (t, 1H, =CH), 7.42 (t, 2H, =CH), 7.33 (s, 3H, =CH), 6.78 (s, 2H, =CH), 1.97 (s, 3H, -CH), 1.77 (s, 6H, -CH₂), 1.68 (q, 6H, -CH₂). ¹³C NMR (DMSO, δ, ppm): 169.85, 158.54, 130.73, 130.53, 129.77, 129.72, 128.51, 128.39, 127.18, 126.76, 102.17, 99.37, 43.94, 38.90, 36.69, 28.17.

Figure S1-1. ¹H NMR spectrum of compound 1 in D₂O

Figure S1-2. ¹³C NMR spectrum of compound 1 in D_2O

Figure S1-3. ¹H NMR spectrum of compound 2 in DMSO

Figure S1-4. ¹³C NMR spectrum of compound 2 in DMSO

Figure S1-5. ¹H NMR spectrum of compound 3 in DMSO

Figure S1-6. ¹³C NMR spectrum of compound 3 in DMSO

Figure S1-7. ¹H NMR spectrum of compound 4a in DMSO

Figure S1-8. ¹³C NMR spectrum of compound 4a in DMSO

Figure S1-9. ¹H NMR spectrum of compound 4b in CDCl₃

Figure S1-10. ¹³C NMR spectrum of compound 4b in CDCl₃

Figure S1-11. ¹H NMR spectrum of compound L1 in CDCl₃

Figure S1-12. ¹³C NMR spectrum of compound L1 in CDCl₃

Figure S1-13. ¹H NMR spectrum of compound L2 in CDCl₃

Figure S1-14. ¹³C NMR spectrum of compound L2 in CDCl₃

Figure S1-15. ¹H NMR spectrum of compound L3 in CDCl₃

Figure S1-16. ¹³C NMR spectrum of compound L3 in CDCl₃

Figure S1-17. ¹H NMR spectrum of compound L4 in CDCl₃ (* - H grease; * - diethyl ether)

Figure S1-18. ¹³C NMR spectrum of compound L4 in CDCl₃ (* - H grease; * - diethyl ether)

1.2 ¹H NMR spectra of nickel complexes

Figure S1-19. ¹H NMR spectrum of complex Ni1 in THF- d_8 (* - THF- d_8 ; * - CH₂Cl₂)

Figure S1-20. ¹H NMR spectrum of complex Ni2 in THF- d_8 (* - THF- d_8)

Figure S1-21. ¹H NMR spectrum of complex Ni3 in CD₂Cl₂ (* - CD₂Cl₂)

Figure S1-22. ¹H NMR spectrum of complex Ni4 in CD₂Cl₂ (* - CD₂Cl₂)

Table S1. Crystal data and structure refinement for complexes Ni1-Ni4		
	Ni1	Ni2
Empirical formula	C ₃₂ H ₂₄ N ₆ NiO ₂	$C_{40}H_{44}N_6NiO_2$
Formula weight	583.28	699.52
Temperature (K)	170.01	170.03
Wavelength (Å)	1.34139	1.34139
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a (Å)	5.41180(10)	6.3174(2)
b (Å)	15.0266(2)	10.7495(3)
c (Å)	15.9498(3)	12.7292(4)
α (°)	91.1300(10)	74.886(2)
β (°)	96.7910(10)	79.406(2)
γ (°)	92.6390(10)	89.242(2)
Volume (Å ³)	1286.17(4)	819.75(4)
Ζ	2	1
Density (calculated) (Mg/m ³)	1.506	1.417
Absorption coefficient (mm ⁻¹)	4.438	3.540
F(000)	604	370
Crystal size (mm ³)	0.05×0.015×0.005	$0.08 \times 0.01 \times 0.005$
Theta range for data collection (°)	4.860 to 54.943	5.491 to 54.961
	-6<=h<=6, -18<=k<=18, -	-7<=h<=7, -12<=k<=13,
Index ranges	17<=l<=19	0<=1<=15
Reflections collected	15594	3022
Independent reflections	4872 [R(int) = 0.0355]	3022 [R(int) = 0.0580]
Completeness to theta = 26.000°	99.4 %	98.6 %
	Semi-empirical from	Semi-empirical from
Absorption correction	equivalents	equivalents
Max. and min. transmission	0.7508 and 0.6187	0.7508 and 0.5831
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	4872 / 0 / 373	3022 / 0 / 224
Goodness-of-fit on F ²	1.023	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0335, wR2 = 0.0809	R1 = 0.0434, wR2 = 0.1223
R indices (all data)	R1 = 0.0420, wR2 = 0.0859	R1 = 0.0520, wR2 = 0.1374
Extinction coefficient	n/a	n/a
Largest diff. peak and hole (e.Å $^{-3}$)	0.197 and -0.529	0.336 and -0.412

2. Crystal data and structure refinement for complexes Ni1-Ni4

	Ni3	Ni4
Empirical formula	C44H32N6NiO2	$C_{52}H_{52}N_6NiO_2$
Formula weight	735.46	851.70
Temperature (K)	169.98	170.02
Wavelength (Å)	1.34139	1.34139
Crystal system	Monoclinic	Triclinic
Space group	P 1211	P-1
a (Å)	9.8938(18)	11.1027(2)
b (Å)	19.286(3)	12.8123(2)
c (Å)	10.6047(19)	16.5909(3)
α (°)	90	68.3340(10)
β (°)	116.982(13)	89.5930(10)
γ (°)	90	74.9630(10)
Volume (Å ³)	1803.2(6)	2107.87(7)
Z	4	2
Density (calculated) (Mg/m ³)	1.355	1.342
Absorption coefficient (mm ⁻¹)	3.243	2.819
F(000)	764	900
Crystal size (mm ³)	0.05×0.03×0.02	0.12×0.1×0.08
Theta range for data collection (°)	4.070 to 55.468	4.182 to 54.927
Index ranges	-12<=h<=10, -23<=k<=18, -	-13<=h<=13, -15<=k<=15, -
	12<=l<=13	20<=l<=20
Reflections collected	9115	21795
Independent reflections	5790 [R(int) = 0.0800]	7938 [R(int) = 0.0448]
Completeness to theta = 26.000°	99.4 %	98.8 %
Absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
Max. and min. transmission	0.7508 and 0.4792	0.7508 and 0.6073
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	5790 / 1 / 479	7938 / 0 / 550
Goodness-of-fit on F^2	0.921	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0666, wR2 = 0.1530	R1 = 0.0367, wR2 = 0.0985
R indices (all data)	R1 = 0.1290, wR2 = 0.1858	R1 = 0.0424, $wR2 = 0.1022$
Extinction coefficient	n/a	n/a
Largest diff. peak and hole (e.Å ⁻³)	0.402 and -0.523	0272 and -0.596

3. NMR spectra, GPC curves and DSC curves of NB-HAc copolymers

0 I

3.1. Microstructure of NB-HAc copolymer

Figure S2-1. ¹H NMR spectra of NB-HAc copolymer obtained by **Ni3** with 30 mol% of HAc (Table 2, entry 6)

 190
 180
 170
 160
 150
 66
 64
 62
 60
 58
 56
 54
 52
 50
 48
 46
 44
 42
 40
 38
 36
 34
 32
 30
 28
 26
 24
 22
 20

 fl (ppm)
 fl (ppm)
 fl (ppm)
 fl (ppm)
 fl (ppm)
 fl (ppm)
 fl (ppm)

Figure S2-2. ¹³C NMR spectra of NB-HAc copolymer obtained by **Ni3** with 30 mol% of HAc (Table 2, entry 6) (*–methyl in toluene).

Around 10 mol% hydroxyl groups were formed by the hydrolysis of the ester groups in the work-up process, which includes a treatment of 10% HCl solution of ethanol.

3.2. HAc incorporation in NB-HAc copolymers obtained by Ni1-Ni4

The incorporation (mol%) of HAc in the copolymer:

$$x = \frac{\frac{I_{a}}{2}}{\frac{I_{a}}{2} + \frac{I_{b} \Box - \frac{I_{a}}{2} \times 12}{10}} \times 100\% = \frac{5I_{a}}{I_{b} \Box - I_{a}} \times 100\%$$

- $I_{\rm a}$ The integration of methylene (–CH₂-O-) in HAc units;
- $I_{\rm b}$ The integration of aliphatic-H in the NB-HAc copolymer.

Figure S2-3. HAc incorporation in NB-HAc copolymer obtained by **Ni1** with 5 mol% of HAc (Table 2, entry 1)

Figure S2-4. HAc incorporation in NB-HAc copolymer obtained by **Ni2** with 10 mol% of HAc (Table 2, entry 2)

Figure S2-5. HAc incorporation in NB-HAc copolymer obtained by **Ni3** with 10 mol% of HAc (Table 2, entry 3)

Figure S2-6. HAc incorporation in NB-HAc copolymer obtained by **Ni4** with 10 mol% of HAc (Table 2, entry 4)

Figure S2-7. HAc incorporation in NB-HAc copolymer obtained by **Ni3** with 20 mol% of HAc (Table 2, entry 5)

Figure S2-8. HAc incorporation in NB-HAc copolymer obtained by **Ni3** with 30 mol% of HAc (Table 2, entry 6)

4.3. GPC curves of NB-HAc copolymers

Figure S2-9. GPC curves of NB-HAc copolymers obtained by Ni1-Ni4

3.4. DSC curves of NB-HAc copolymers

Figure S2-10. DSC curve of NB-HAc copolymer obtained by **Ni1** with 5 mol% of HAc (Table 2, entry 1)

Figure S2-11. DSC curve of NB-HAc copolymer obtained by **Ni2** with 10 mol% of HAc (Table 2, entry 2)

Figure S2-12. DSC curve of NB-HAc copolymer obtained by **Ni3** with 10 mol% of HAc (Table 2, entry 3)

Figure S2-13. DSC curve of NB-HAc copolymer obtained by **Ni4** with 10 mol% of HAc (Table 2, entry 4)

Figure S2-14. DSC curve of NB-HAc copolymer obtained by **Ni3** with 20 mol% of HAc (Table 2, entry 5)

Figure S2-15. DSC curve of NB-HAc copolymer obtained by **Ni3** with 30 mol% of HAc (Table 2, entry 6)

4. NMR spectra, GPC curves and DSC curves of NB-AAc copolymers

4.1. Microstructure of NB-AAc copolymer

Figure S3-1. ¹H NMR spectra of NB-AAc copolymer obtained by **Ni3** with 20 mol% of AAc (Table 2, entry 12)

Figure S3-2. ¹³C NMR spectra of NB-AAc copolymer obtained by **Ni3** with 20 mol% of AAc (Table 2, entry 12) (* – methyl in toluene; # – methylene in ethanol). The hydroxyl groups were formed by the hydrolysis of the ester groups in the work-up process, which includes a treatment of 10% HCl solution of ethanol.

4.2. AAc incorporation in NB-AAc copolymers obtained by Ni1-Ni4

The incorporation (mol%) of AAc in the copolymer:

$$x = \frac{\frac{I_{a}}{2}}{\frac{I_{a}}{2} + \frac{I_{b} \Box \frac{I_{a}}{2} \times 6}{10}} \times 100\% = \frac{5I_{a}}{I_{b} + 2I_{a}} \times 100\%$$

 $I_{\rm a}$ – The integration of methylene (–CH₂-O-) in AAc units;

 $I_{\rm b}$ – The integration of aliphatic-H in the NB-AAc copolymer.

Figure S3-3. AAc incorporation in NB-AAc copolymer obtained by **Ni1** with 5 mol% of AAc (Table 2, entry 8)

Figure S3-4. AAc incorporation in NB-AAc copolymer obtained by **Ni2** with 5 mol% of AAc (Table 2, entry 9)

Figure S3-5. AAc incorporation in NB-AAc copolymer obtained by Ni3 with 5 mol% of AAc (Table 2, entry 10)

Figure S3-6. AAc incorporation in NB-AAc copolymer obtained by **Ni3** with 10 mol% of AAc (Table 2, entry 11)

Figure S3-7. AAc incorporation in NB-AAc copolymer obtained by **Ni3** with 20 mol% of AAc (Table 2, entry 12)

Figure S3-8. AAc incorporation in NB-AAc copolymer obtained by **Ni4** with 42 mol% of AAc (Table 2, entry 13)

4.3. GPC curves of NB-AAc copolymers

Figure S3-9. GPC curves of NB-AAc copolymers obtained by Ni1-Ni4

4.4. DSC curves of NB-AAc copolymers

Figure S3-10. DSC curve of NB-AAc copolymer obtained by Ni with 5 mol% of AAc (Table 2, entry 8)

Figure S3-11. DSC curve of NB-AAc copolymer obtained by **Ni2** with 5 mol% of AAc (Table 2, entry 9)

Figure S3-12. DSC curve of NB-AAc copolymer obtained by **Ni3** with 5 mol% of AAc (Table 2, entry 10)

Figure S3-13. DSC curve of NB-AAc copolymer obtained by **Ni3** with 10 mol% of AAc (Table 2, entry 11)

Figure S3-14. DSC curve of NB-AAc copolymer obtained by **Ni3** with 20 mol% of AAc (Table 2, entry 12)

Figure S3-15. DSC curve of NB-AAc copolymer obtained by **Ni4** with 20 mol% of AAc (Table 2, entry 13)

5. NMR spectra, GPC curves and DSC curves of NB-MA copolymers

5.1. Microstructure of NB-MA copolymer

Figure S4-1. ¹H NMR spectra of NB-MA copolymer obtained by **Ni3** with 10 mol% of MA (Table 2, entry 18) (# – methylene in ethanol)

Figure S4-2. ¹³C NMR spectra of NB-MA copolymer obtained by **Ni3** with 10 mol% of MA (Table 2, entry 18) (* – methyl in toluene)

5.2. MA incorporation in NB-MA copolymers obtained by Ni1-Ni4

The incorporation (mol%) of MA in the copolymer:

$$x = \frac{\frac{I_{a}}{3}}{\frac{I_{a}}{3} + \frac{I_{b} \Box \frac{I_{a}}{3} \times 3}{10}} \times 100\% = \frac{10I_{a}}{3I_{b} + 7I_{a}} \times 100\%$$

- $I_{\rm a}$ The integration of methyl group (-OCH₃) in MA units;
- $I_{\rm b}$ The integration of aliphatic-H in the NB-MA copolymer.

Figure S4-3. MA incorporation in NB-MA copolymer obtained by **Ni1** with 5 mol% of MA (Table 2, entry 15)

Figure S4-4. MA incorporation in NB-MA copolymer obtained by **Ni2** with 5 mol% of MA (Table 2, entry 16)

Figure S4-5. MA incorporation in NB-MA copolymer obtained by **Ni3** with 5 mol% of MA (Table 2, entry 17)

Figure S4-6. MA incorporation in NB-MA copolymer obtained by **Ni3** with 10 mol% of MA (Table 2, entry 18)

Figure S4-7. MA incorporation in NB-MA copolymer obtained by **Ni4** with 10 mol% of MA (Table 2, entry 19)

Figure S4-8. MA incorporation in NB-MA copolymer obtained by **Ni3** with 5 mol% of MA (60 °C, Table 2, entry 21)

Figure S4-9. MA incorporation in NB-MA copolymer obtained by **Ni3** with 5 mol% of MA (80 °C, Table 2, entry 22)

5.3. GPC curves of NB-MA copolymers

Figure S4-10. GPC curves of NB-MA copolymers obtained by Ni1-Ni4

5.4. DSC curves of NB-MA copolymers

Figure S4-11. DSC curve of NB-MA copolymer obtained by **Ni1** with 5 mol% of MA (Table 2, entry 15)

Figure S4-12. DSC curve of NB-MA copolymer obtained by **Ni2** with 5 mol% of MA (Table 2, entry 16)

Figure S4-13. DSC curve of NB-MA copolymer obtained by **Ni3** with 5 mol% of MA (Table 2, entry 17)

Figure S4-14. DSC curve of NB-MA copolymer obtained by **Ni3** with 10 mol% of MA (Table 2, entry 18)

Figure S4-15. DSC curve of NB-MA copolymer obtained by **Ni4** with 10 mol% of MA (Table 2, entry 19)