Supporting Information

Two New approaches Based on Dynamic Carboxyl-Hydroxyl or Hydroxyl-Carboxyl Transformation for High Molecular Weight Poly(Butylene Maleate)

Tong Chen, Sunan Tian, Zhining Xie, Zhao-Xia Guo, Jun Xu, Bao-Hua Guo*

Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University,

Beijing 100084, China

Table of Contents

Section S1. Results of model polyesterification using excess MA to BDO	2
Section S2. NMR spectra of maleic anhydride byproduct	3
Section S3. Characterizations of MA-based polyesters prepared with excess MA	4
Section S4. PBM synthesis with conventional transesterification catalysts and dehydration of MA	11
Section S5. Analysis of terminal groups by NMR during polyesterification with excess MA	12
Section S6. Characterization of poly(butylene itaconate) by NMR	13
Section S7. NMR spectra of MA-based polyesters prepared with equimolar MA and diols	14
Section S8. NMR Spectra of MA-based polyesters prepared with excess diols	20
Section S9. PBM synthesis with conventional transesterification catalysts with excess BDO and PBM synthesis	nthesis using
Dimethyl maleate and BDO	23
Section S10. Analysis of byproduct in the cold trap by NMR	24
Section S11. Analysis of terminal groups by NMR during polyesterification with excess diol	25
Section S12. Characterizations of the cyclic byproducts obtained with excess BDO	26

Section S1. Results of model polyesterification using excess MA to BDO

entry	MA/BDO ^a	TsOH (mol%)	temperature (°C)	time to climb (h)	M _n (kDa) ^c	cis (%) ^d
1	1.05 : 1	0.5	135	N ^b	22	95.2
2	1.05 : 1	1	135	2.5	92	93.9
3	1.05 : 1	1.5	135	1.5	78	96.2
4	1.05 : 1	1	110	9	38	98.6
5	1.05 : 1	1	120	3.5	72	97.5
6	1.05 : 1	1	150	1.5	59	92.3
7	1.1:1	1	135	4	82	94.1

Table S1 | Polyesterification of MA with BDO under different reaction conditions

^a MA/diol was the molar ratio of MA and diol. ^b No Weissenberg effect was observed within 8 h. ^c M_n obtained by gel permeation chromatography (GPC) in CDCl₃. ^d cis % was defined as cis/(cis+trans) and calculated from ¹H NMR.

Section S2. NMR spectra of maleic anhydride byproduct

Fig. S1 | a, ¹H NMR spectrum of maleic anhydride. b, ¹³C NMR spectrum of maleic anhydride.

Fig. S2 | **GPC curves of MA-based polyesters synthesized with MA/diol of 1.05:1**. a, PBM. b, Poly(pentylene maleate). c, Poly(3-methylpentylene maleate). d, Poly(hexylene maleate). e, Poly(decylene maleate). f, Poly(dodecylene maleate). g, Poly(1,4-cyclohexandimethylene maleate).

Fig. S3 | **Poly(pentylene maleate) (Table 1, entry 2), synthesized with MA/1,5-pentanediol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=77 kDa, cis content=96.2%)

Fig. S4 | **Poly(3-methylpentylene maleate) (Table 1, entry 3), synthesized with MA/3-methyl-1,5-pentanediol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=53 kDa, cis content=97.8%)

Fig. S5 | **Poly(hexylene maleate) (Table 1, entry 4), synthesized with MA/1,6-hexanediol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=52 kDa, cis content=97.9%)

Fig. S6 | **Poly(decylene maleate) (Table 1, entry 5), synthesized with MA/1,10-decanediol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=51 kDa, cis content=97.2%)

Fig. S7 | **Poly(dodecylene maleate) (Table 1, entry 6), synthesized with MA/1,12-dodecanediol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=80 kDa, cis content=96.4%)

Fig. S8 | **Poly(1,4-cyclohexanedimethylene maleate) (Table 1, entry 7), synthesized with MA/1,4-cyclohexanedimethanol of 1.05:1, in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=44 kDa, cis content=97.2%)

Section S4. PBM synthesis with conventional transesterification catalysts and dehydration of MA

entry	MA:BDO ^a	catalyst	catalyst content (mol%) ^f	temp(°C) ^b	time(h) ^c	cis (%) ^d	M _n (kDa) ^e
1	1.05:1	ZnCl ₂	0.5	135	6	88.1	1.9
2	1.05:1	SnCl_2	0.5	135	6	74.6	8.7
3	1.05:1	Sb_2O_3	0.5	135	6	91.6	1.5
4	1.05:1	GeO ₂	0.5	135	6	91.0	1.3
5	1.05:1	Ti(OBu) ₄	0.5	135	6	91.4	2.6

Table S2 | Different catalysts applied for synthesis of PBM with excess MA

^a In molar ratio. ^b Polycondensation temperature. ^c Polycondensation time. ^d cis % was defined as cis/(cis+trans) and calculated from ¹H NMR. ^e Mn was calculated from ¹H NMR. ^f Molar ratio of catalyst to BDO.

Table S3 | Conversion of maleic acid to maleic anhydride

entry	Feeding	temp(°C) ^a	time(h) ^b	Test description
1	maleic acid (0.2mol)	140	0.5	A large amount of maleic anhydride was collected in the cold trap.

^a Polycondensation temperature. ^b Polycondensation time.

Section S5. Analysis of terminal groups by NMR during polyesterification with

Fig.S9 | **NMR analysis of the reaction mixture after 1 h at 110 °C (TsOH: 1 mol%, MA/BDO= 1.05:1).** Top: ¹³C NMR spectrum. Bottom: ¹H NMR spectrum in CDCl₃.

Fig. S10 | ¹**H NMR spectrum of poly(butylene itaconate)**, synthesized under typical conditions (itaconic acid /BDO =1.05:1, 135 °C, 1 mol% TsOH, 8 h), in CDCl₃. (Mn=960)

Section S7. NMR spectra of MA-based polyesters prepared with equimolar MA

and diols

Fig. S11 | **Poly(pentylene maleate) (Table 1, entry 9) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=11.8 kDa, cis content=97.8%)

Fig. S12 | **Poly(3-methylpentylene maleate) (Table 1, entry 10) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=9.6 kDa, cis content=99.2%)

Fig. S13 | **Poly(hexylene maleate) (Table 1, entry 11) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=15.2 kDa, cis content=98.5%)

Fig. S14 | **Poly(decylene maleate) (Table 1, entry 12) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=11.2 kDa, cis content=99.2%)

Fig. S15 | **Poly(dodecylene maleate) (Table 1, entry 13) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=9.9 kDa, cis content=98.9%)

Fig. S16 | **Poly(1,4-cyclohexanedimethylene maleate) (Table 1, entry 14) in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum. (M_n=12.9 kDa, cis content=98.4%)

Section S8. NMR Spectra of MA-based polyesters prepared with excess diols

Fig. S17 | ¹**H NMR spectrum of poly(pentylene maleate) (Table 1, entry 16) in CDCl₃.** (Mn=3.8 kDa, cis content=96.7%)

Fig. S18 | ¹**H NMR spectrum of poly(3-methylpentylene maleate) (Table 1, entry 17) in CDCl₃.** (Mn= 4.7 kDa, cis content=99.5%)

Fig. S19 | ¹**H NMR spectrum of poly(hexylene maleate) (Table 1, entry 18) in CDCl₃.** (Mn=2.8 kDa, cis content=99.1%)

Fig. S20 | ¹**H NMR spectrum of poly(decylene maleate) (Table 1, entry 19) in CDCl₃.** (Mn=3.1 kDa, cis content=99.7%)

Fig. S21 | ¹**H NMR spectrum of poly(dodeylcene maleate) (Table 1, entry 20) in CDCl₃.** (M_n=3.4 kDa, cis content=99.6%)

Fig. S22 | ¹**H NMR spectrum of poly(1,4-cyclohexanedimethylene maleate) (Table 1, entry 21) in CDCl₃.** (M_n=2.7 kDa, cis content=98.2%)

Section S9. PBM synthesis with conventional transesterification catalysts with excess BDO and PBM synthesis using Dimethyl maleate and BDO

entry	MA: BDO ^a	catalyst	catalyst content (mol%) ^f	temp(°C) ^b	time(h) ^c	cis (%) ^d	M _n (kDa) ^e	ref
1	1:1.1	ZnCl ₂	0.5	160	6	77.1	7 ^d	this work
2	1:1.1	$SnCl_2$	0.5	160	6	72.5	10.3 ^d	this work
3	1:1.1	Sb_2O_3	0.5	160	6	78.9	2.2 ^d	this work
4	1:1.1	GeO ₂	0.5	160	6	88.6	1.2 ^d	this work
5	1:1	Ti(OBu) ₄	0.6	160	-	88.9	4.2	1

Table S4 | Different catalysts applied for the synthesis of PBM with excess BDO

^a In molar ratio. ^b Polycondensation temperature. ^c Polycondensation time. ^d cis % was defined as cis/(cis+trans) and calculated from ¹H NMR. ^e Mn was calculated from ¹H NMR. ^f Molar ratio of catalyst to MA.

Table S5	Synthesis	of PBM using	dimethyl	maleate and BDO
----------	-----------	--------------	----------	-----------------

entry	Feeding	catalyst	catalyst content (mol%) ^d	temp(°C) ^b	time(h) ^c	Test description
1	dimethyl maleate : BDO=1:1.1 ª	TsOH	1	140	8	In the esterification stage, no liquid was collected in the water trap

^a In molar ratio. ^b Esterification temperature. ^c Esterification time. ^d Molar ratio of catalyst to dimethyl maleate.

Section S10. Analysis of byproduct in the cold trap by NMR

Fig.S23 | **NMR analysis of liquid byproducts mixture in the cold trap (MA/BDO= 1:1.1).** Top: ¹³C NMR spectrum. Bottom: ¹H NMR spectrum in DMSO.

Section S11. Analysis of terminal groups by NMR during polyesterification with

Fig.S24 | **NMR analysis of the reaction mixture after 1 h at 120 °C (TsOH: 1 mol%, MA/BDO= 1:1.2).** Top: ¹³C NMR spectrum. Bottom: ¹H NMR spectrum in CDCl₃.

Section S12. Characterizations of the cyclic byproducts obtained with excess **BDO**

Fig. S25 | **Cyclic poly(butylene maleate) byproduct in CDCl₃.** Top: ¹H NMR spectrum. Bottom: ¹³C NMR spectrum.

Fig. S26 | DSC curve of the cyclic byproduct. T_m is 73.6 °C.

Fig. S27 | MALDI-TOF MS of the cyclic byproduct

1. Yu, Y.; Wei, Z.; Leng, X.; Li, Y. J. P. C., Facile preparation of stereochemistry-controllable biobased poly (butylene maleate-co-butylene fumarate) unsaturated copolyesters: a chemoselective polymer platform for versatile functionalization via aza-Michael addition. **2018**, *9* (45), 5426-5441.