# Supplementary Information:

Crystallization Behavior, Structure, Morphology, and Thermal Properties

of Crystalline and Amorphous Stereo Diblock Copolymers,

Poly(L-lactide)-*b*-Poly(DL-lactide)

Hideto Tsuji, <sup>a\*</sup> Kazumasa Iguchi, <sup>a</sup> Kohji Tashiro, <sup>b</sup> and Yuki Arakawa <sup>a</sup>

<sup>a</sup>Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan E-mail: ht003@edu.tut.ac.jp

<sup>b</sup>Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan

#### Contents

- S1. <sup>1</sup>H NMR spectra of synthesized PLLA, PLLA-*b*-PDLLA, and PDLLA polymers (Figure S1)
- S2. Thermal properties of PLLA, PLLA-b-PDLLA, and PDLLA polymers for heating (Table S1)
- S3. Thermal properties of PLLA, PLLA-b-PDLLA, and PDLLA polymers for cooling (Table S2)
- S4. Magnified WAXD profiles (Cu-Kα) of PLLA, PLLA-*b*-PDLLA, and PDLLA polymers (Figure S2)
- S5. Structural parameters of PLLA and PLLA-*b*-PDLLAA polymers (Table S3)
- S6. Avrami plot of PLLA and PLLA-b-PDLLA polymers (Figure S3)
- S7. WAXD profiles (Mo-Kα) of PLLA and PLLA-*b*-PDLLA polymers (Figure S4)
- S8. WAXD half-width of PLLA and PLLA-b-PDLLA polymers (Table S4)



S1. <sup>1</sup>H NMR spectra of synthesized PLLA, PLLA-*b*-PDLLA, and PDLLA polymers (Figure S1)

**Figure S1.** <sup>1</sup>H NMR spectra of synthesized L100 (a), L83 (b), L852 (c), L25 (d), and L0 (e) polymers in CDCl<sub>3</sub>. The peak at 3.5 ppm is ascribed to methyl proton of methanol remaining in polymers.

|      |              | i nermai properti      | CS OF I LLA          | , I LLA-0-I DI        |                                   | lymers to                    | r nearing.                  |                            |
|------|--------------|------------------------|----------------------|-----------------------|-----------------------------------|------------------------------|-----------------------------|----------------------------|
| Code | PLLA         | Crystallization a)     | $T_{\rm g}^{\rm b)}$ | $T_{\rm cc}^{\rm b)}$ | $T_{\rm m}^{\rm b}$               | $\Delta H_{\rm cc}^{\rm c)}$ | $\Delta H_{\rm m}^{\rm c)}$ | $\Delta H(\text{tot})^{d}$ |
|      | fraction (%) | -                      | $(\mathbf{C})$       | (10)                  | $(\mathcal{C})$                   | (J g <sup>-1</sup> )         | (J g <sup>-1</sup> )        | (J g <sup>-1</sup> )       |
| L100 | 100          | SE                     | 47.5                 | 90.3                  | 173.9                             | -4.1                         | 68.1                        | 64.0                       |
|      |              | Pr                     | 61.2                 |                       | 174.1                             |                              | 62.1                        | 62.1                       |
|      |              | MC (160°C)             | 50.1                 |                       | 182.7 <sup>e)</sup>               |                              | 83.3                        | 83.3                       |
|      |              | MC (140°C)             |                      |                       | 163.1, 176.0 <sup>e)</sup>        |                              | 79.2                        | 79.2                       |
|      |              | MC (120°C)             |                      |                       | 171.7 <sup>e)</sup>               |                              | 68.0                        | 68.0                       |
|      |              | MC (110°C)             |                      |                       | 172.0                             |                              | 68.8                        | 68.8                       |
|      |              | MC (100°C)             |                      |                       | 165.6, <sup>f)</sup> 173.7        |                              | 63.7                        | 63.7                       |
|      |              | MC (90°C)              |                      |                       | 164.0, <sup>f)</sup> 173.2        |                              | 52.9                        | 52.9                       |
|      |              | MC (80°C)              |                      | 135.4                 | 162.7, <sup>f)</sup> 172.9        | -5.0                         | 56.5                        | 51.5                       |
|      |              | MC (0°C) <sup>g)</sup> | 56.5                 | 98.5                  | 163.5, 173.1                      | -59.8                        | 59.9                        | 0.1                        |
| L83  | 82.8         | SE                     |                      | 132.2                 | 170.0                             | -3.1                         | 46.5                        | 43.4                       |
|      |              | Pr                     | 52.6                 |                       | 158.2, 169.4                      |                              | 38.5                        | 38.5                       |
|      |              | MC (160°C)             | 49.2, 57.5           | 107.6, 155.1          | 164.6                             | -42.1                        | 42.4                        | 0.3                        |
|      |              | MC (140°C)             | 51.1                 |                       | 169.1 <sup>e)</sup>               |                              | 51.0                        | 51.0                       |
|      |              | MC (120°C)             | 51.2                 |                       | 163.8, <sup>e)</sup> 169.7        |                              | 52.3                        | 52.3                       |
|      |              | MC (110°C)             | 43.8                 |                       | 155.7, <sup>f)</sup> 168.6        |                              | 48.6                        | 48.6                       |
|      |              | MC (100°C)             | 48.1, 56.3           |                       | 147.5, <sup>f)</sup> 168.6        |                              | 38.8                        | 38.8                       |
|      |              | MC (90°C)              | 55.2                 | 149.7                 | 168.9                             | -5.3                         | 40.8                        | 35.5                       |
|      |              | MC (80°C)              | 52.0                 | 148.0                 | 169.0                             | -7.0                         | 44.6                        | 37.6                       |
|      |              | MC (0°C) <sup>g)</sup> | 54.6                 | 107.9, 154.2          | 168.1                             | -40.3                        | 41.5                        | 1.2                        |
| L52  | 52.4         | SE                     | 43.9                 | 99.2                  | 163.9                             | -9.7                         | 26.5                        | 16.8                       |
|      |              | Pr                     | 50.2                 |                       | 154.8, 164.4                      |                              | 35.5                        | 35.5                       |
|      |              | MC (160°C)             | 48.4, 56.1           | 125.7                 | 154.5, 163.1                      | -24.7                        | 25.5                        | 0.8                        |
|      |              | MC (140°C)             | 48.0                 |                       | 162.1 <sup>e)</sup>               |                              | 36.1                        | 36.1                       |
|      |              | MC (120°C)             | 50.6                 |                       | 156.9, <sup>e)</sup> 163.6        |                              | 27.6                        | 27.6                       |
|      |              | MC (110°C)             | 47.2                 |                       | 126.0, 154.2, <sup>e)</sup> 163.1 |                              | 29.3                        | 29.3                       |
|      |              | MC (100°C)             | 45.4                 |                       | 119.9, 151.7, <sup>e)</sup> 163.3 |                              | 31.4                        | 31.4                       |
|      |              | MC (90°C)              | 42.1, 54.2           | 148.0                 | 108.7, 163.4                      | -2.0                         | 29.1                        | 27.1                       |
|      |              | MC (80°C)              | 51.9                 | 144.5                 | 163.1                             | -3.9                         | 28.4                        | 24.5                       |
|      |              | MC (0°C) <sup>g)</sup> | 53.6                 | 125.9                 | 154.5, 163.2                      | -24.8                        | 25.0                        | 0.2                        |
| L25  | 25.4         | SE                     | 41.0, 49.1           | 107.6                 | 147.8                             | -4.0                         | 4.4                         | 0.4                        |
|      |              | Pr                     | 52.8                 | 114.4                 | 144.1, 154.9                      | -1.0                         | 11.1                        | 10.1                       |
|      |              | MC (160°C)             | 48.1, 54.8           |                       |                                   |                              |                             |                            |
|      |              | MC (140°C)             | 49.1                 |                       | 152.4                             |                              | 0.7                         | 0.7                        |
|      |              | MC (120°C)             | 48.5                 |                       | 131.5, <sup>e)</sup> 142.9, 148.6 |                              | 11.9                        | 11.9                       |
|      |              | MC (110°C)             | 46.6                 |                       | 124.2, <sup>e)</sup> 138.9, 146.6 |                              | 13.8                        | 13.8                       |
|      |              | MC (100°C)             | 47.7                 |                       | 116.7, <sup>e)</sup> 135.7, 144.5 |                              | 13.2                        | 13.2                       |
|      |              | MC (90°C)              | 45.3, 53.2           |                       | 108.2, <sup>e)</sup> 131.8, 144.5 |                              | 11.2                        | 11.2                       |
|      |              | MC (80°C)              | 50.4                 |                       | 146.5                             |                              | 8.2                         | 8.2                        |
|      |              | MC (0°C) <sup>g)</sup> | 50.2                 |                       |                                   |                              |                             |                            |
| LO   | 0            | SE                     | 10.1                 |                       |                                   |                              |                             |                            |
|      |              | Pr                     | 29.1                 |                       |                                   |                              |                             |                            |
|      |              | MC (160°C)             | 45.9                 |                       |                                   |                              |                             |                            |
|      |              | MC (140°C)             | 52.4                 |                       |                                   |                              |                             |                            |
|      |              | MC (120°C)             | 47.9                 |                       |                                   |                              |                             |                            |
|      |              | MC (110°C)             | 47.8                 |                       |                                   |                              |                             |                            |
|      |              | MC (100°C)             | 48.7                 |                       |                                   |                              |                             |                            |
|      |              | MC (90°C)              | 45.7                 |                       |                                   |                              |                             |                            |
|      |              | MC (80°C)              | 48.4                 |                       |                                   |                              |                             |                            |
|      |              | MC (0°C) <sup>g)</sup> | 48.9                 |                       |                                   |                              |                             |                            |

S2. Thermal properties of PLLA, PLLA-*b*-PDLLA, and PDLLA polymers for heating (Table S1)

Thermal properties of PLLA PLLA-*b*-PDLLA and PDLLA polymers for heating Table S1

<sup>a)</sup> SE, Pr, and MC indicate that the samples were prepared correspondingly by solvent-evaporation, precipitation, and meltcrystallization at shown  $T_c$ .

b)  $T_{\rm g}$ ,  $T_{\rm cc}$ , and  $T_{\rm m}$  are glass transition, cold crystallization, and melting temperatures, respectively. c)  $\Delta H_{\rm cc}$  and  $\Delta H_{\rm m}$  cold crystallization and melting enthalpies, respectively. d)  $\Delta H(\text{tot}) = \Delta H_{\rm cc} + \Delta H_{\rm m}$ . e)  $T_{\rm m}$  values of  $\alpha$ -form used to obtain  $T_{\rm m}^{0}$  values. f)  $T_{\rm m}$  values of  $\delta$ -form used to obtain  $T_{\rm m}^{0}$  values. g) Melt-quenched samples.

## S3. Thermal properties of PLLA, PLLA-*b*-PDLLA, and PDLLA polymers for cooling (Table S2)

| Code | PLLA fraction<br>(%) | $T_{\rm c}^{\rm a)}$ (°C) | $\Delta H_{\rm c}^{\rm b)}$ (J g <sup>-1</sup> ) |
|------|----------------------|---------------------------|--------------------------------------------------|
| L100 | 100                  | 117.8                     | -55.6                                            |
| L83  | 82.8                 | 105.3                     | -35.5                                            |
| L52  | 52.4                 |                           |                                                  |
| L25  | 25.4                 |                           |                                                  |
| LO   | 0                    |                           |                                                  |

Table S2. Thermal properties of PLLA/PDLA, PLLA-*b*-PDLLA blends, and PDLLA for cooling.

<sup>a)</sup> Crystallization temperature. <sup>b)</sup> Crystallization enthalpy.



# S4. Magnified WAXD profiles (Cu-Kα) of PLLA and PLLA-*b*-PDLLA polymers (Figure S2)

**Figure S2.** Magnified WAXD profiles ( $2\theta$  range of 13–22°, Cu-K $\alpha$ ) of PLLA (L100) (a), PLLA-*b*-PDLLA polymers, L83 (b), L52 (c), L25 (d), and PDLLA (L0) (e) crystallized at different crystallization temperature ( $T_c$ ) values from the melt.

## **S5. Structural parameters of PLLA and PLLA-***b***-PDLLA polymers (Table S3)**

Table S3. Structural parameters of PLLA and PLLA-b-PDLLA polymers crystallized at 130°C for 10h from the melt.

| Code       | PLLA fraction | $L^{a)}$<br>(Å) | $d_c^{(b)}$   | $d_{a}^{c)}$  | $d_{\rm tr}^{\rm d}$ | $X_c$        |
|------------|---------------|-----------------|---------------|---------------|----------------------|--------------|
| L100       | 100           | 168.2           | 83.5          | 84.7          | 32.2                 | 68.1         |
| L83<br>L52 | 82.8<br>52.4  | 182.2<br>231.5  | 90.4<br>116.4 | 91.8<br>115.1 | 34.9<br>44 5         | 51.9<br>36.3 |
| L25        | 25.4          | 270.5           | 137.3         | 133.2         | 51.3                 | 19.6         |

a) Long period.
b) Mean lamellar thickness.
c) Mean thickness of amorphous layer.
d) Mean thickness of transition layer between the crystalline and amorphous layers.



## S6. Avrami plot of PLLA and PLLA-*b*-PDLLA polymers (Figure S3)

**Figure S3.** Avrami plot of PLLA (L100) (a), PLLA-*b*-PDLLA polymers, L83 (b), L52 (c), and L25 (d) crystallized at different crystallization temperature ( $T_c$ ) values from the melt.





**Figure S4.** WAXD profiles (Mo-Kα) of PLLA, PLLA-*b*-PDLLA polymers crystallized at 130°C for 10 h from the melt.

# S8. WAXD half-width of PLLA and PLLA-*b*-PDLLA polymers (Table S4)

| Code | PLLA fraction<br>(%) | Half-width<br>(°) |  |  |
|------|----------------------|-------------------|--|--|
| L100 | 100                  | 0.299             |  |  |
| L83  | 82.8                 | 0.322             |  |  |
| L52  | 52.4                 | 0.348             |  |  |
| L25  | 25.4                 | 0.355             |  |  |

Table S4. WAXD half-width of PLLA and PLLA-*b*-PDLLA polymers (113/203) obtained from Figure S4.