Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for:

The "solid-state" ring-opening cationic polymerization of 1,3,5-trioxane: Frozen polymerization for suppression of oligomer formation and synthesis of ultrahigh molecular weight polymers

Chihiro Suemitsu,^{a,b} Arihiro Kanazawa,^a and Sadahito Aoshima ^a*

 ^a Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
 ^b Asahi Kasei Corporation, Kawasaki, Kanagawa 210-0863, Japan

Contents:

Figure S1. The experimental method of "frozen polymerization"

Figure S2. MALDI-TOF-MS spectrum of a POM copolymer sample obtained under conditions similar to those for molten-state homopolymerization of TOX

Figure S3. MWD curves of the polymers obtained in the molten-state polymerizations of TOX

Figure S4. ¹H NMR spectra of the polymers obtained in the molten-state polymerization (polymerization temperature: 90 °C), frozen polymerization (90 °C \rightarrow 4 °C), and solid-state polymerization (50 °C)

Figure S5. Enlarged view of temperature transition in polymerization systems

Table S1. Reproducibility of molten-state polymerization and frozen polymerization

Figure S6. The relationships between reaction time and temperature of reaction mixture; reaction time and yield; reaction time and M_w ; temperature of reaction mixture and yield plot; and temperature of reaction mixture and M_w plot in the molten-state polymerization and frozen polymerization of TOX

Figure S7. MWD curves of the polymers obtained by heating the reaction mixture for 1—10 min at 140 °C without quenching frozen polymerization of TOX

Figure S8. The experimental method of solid-state polymerization

Figure S9. Two-dimensional pattern of WAXS and SAXS of the polymers obtained in the solid-state polymerization

Figure S10. SEM images of the polymers obtained in the solid-state polymerization

Figure S1. The experimental method of "frozen polymerization".

Figure S2. MALDI-TOF-MS spectrum of a POM copolymer sample obtained under conditions similar to those for molten-state homopolymerization of TOX (initial feed ratio: TOX = 96 mol%, 1,3-dioxolane = 4 mol%): [catalyst]₀/[monomer]₀ = 7 × 10⁻⁵, for 30 s, at 90 °C.

Figure S3. MWD curves of the polymers obtained in the molten-state polymerization of TOX: $[catalyst]_0/[monomer]_0 = (a) 1.8 \times 10^{-4}$, (b) 2.6×10^{-4} (the same data as those shown in Figure 4(c)), (c) 3.5×10^{-4} , or (d) 7.0×10^{-4} , for 15 s—6 h, at 90 °C.

Figure S4. ¹H NMR spectra of the polymers obtained in (a) molten-state polymerization (polymerization temperature: 90 °C), (b) frozen polymerization (90 °C \rightarrow 4 °C), and solid-state polymerization (50 °C): [catalyst]₀/[monomer]₀ = 2.6 × 10⁻⁴, for 30 min.

Figure S5. Enlarged view of temperature transition in polymerization systems: $[catalyst]_0/[monomer]_0 = 2.6 \times 10^{-4}$, for 30 min, Initial temperature (oil bath): 90 °C. The same data as those shown in Figure 3.

Entry	Polymerization temperature	Yield	Oligomer ratio	$M_{ m w}$ (× 10 ⁶)	$M_{ m p} \ (imes 10^6)$	$M_{ m w}/M_{ m n}$	$T_{\rm m}$
1	90 °C (molten-state polymerization)	89 %	6.5 %	0.16	0.10	5.2	183 °C
2		86 %	6.5 %	0.20	0.11	6.1	181 °C
3		89 %	6.5 %	0.22	0.13	6.8	182 °C
4		88 %	7.5 %	0.24	0.14	8.0	181 °C
5		84 %	6.8 %	0.22	0.14	7.0	182 °C
6	90 °C \rightarrow 4 °C (frozen polymerization)	58 %	5.8 %	0.88	0.41	25	188 °C
7		85 %	5.4 %	1.2	0.54	30	188 °C
8		85 %	4.8 %	1.1	0.49	26	190 °C
9		78 %	5.2 %	1.0	0.50	28	189 °C
10		86 %	5.3 %	1.1	0.59	29	188 °C

Table S1. Reproducibility of molten-state polymerization and frozen polymerization^a

^a [catalyst]₀/[monomer]₀ = 2.6×10^{-4} , for 30 min.

Figure S6. The relationships between (a) reaction time and temperature of reaction mixture; (b) reaction time and yield; (c) reaction time and M_w ; (d) temperature of reaction mixture and yield; and (e) temperature of reaction mixture and M_w in the molten-state polymerization and frozen polymerization of TOX: [catalyst]₀/[monomer]₀ = 2.6×10^{-4} , for 1—60 min.

Figure S7. MWD curves of the polymers obtained by heating the reaction mixture for 1—10 min at 140 °C without quenching frozen polymerization of TOX: $[catalyst]_0/[monomer]_0 = 2.6 \times 10^{-4}$, frozen polymerization was conducted at 4 °C.

Figure S8. The experimental method of solid-state polymerization.

Figure S9. Two-dimensional pattern of (a) WAXS and (b) SAXS of the polymers obtained in the solid-state polymerization: $[catalyst]_0/[monomer]_0 = 2.6 \times 10^{-4}$, for 30 min, at room temperature— 60 °C.

Figure S10. SEM images of the polymers obtained in the solid-state polymerization (50 °C): $[catalyst]_0/[monomer]_0 = 2.6 \times 10^{-4}$, for 30 min.