Electronic Supporting Information

Systematically Investigating the Effect of the Aggregation
 Behaviors in Solution on the Charge Transport Properties of BDOPV-Based Polymers with Conjugation-Break Spacers

Yi Liu, ${ }^{\text {a }}$ Xin-Yi Wang, ${ }^{\text {b }}$ Zi-Yuan Wang, ${ }^{\text {b }}$ Yang Lu ${ }^{\text {b }}$ Xiu-Fen Cheng, ${ }^{\text {a }}$ Bo Tang, ${ }^{* a}$ JieYu Wang, ${ }^{\text {b }}$ Jian Pei*b

${ }^{a}$ College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial, Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014
${ }^{\text {b }}$ Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Email: tangb@sdnu.edu.cn; jianpei@pku.edu.cn

1. General procedures and experimental details

All commercially available chemicals and solvents are of reagent grade unless otherwise indicated. All air and water sensitive reactions were took place in under N_{2} atmosphere. Gel permeation chromatography (GPC) $\left(150{ }^{\circ} \mathrm{C}, 1,2,4\right.$-trichlorobenzene) determined molecular weights by Polymer Laboratories PL-GPC220. Absorption spectra were performed on PerkinElmer Lambda 750 UV-vis spectrometer. Variedtemperature absorption spectra were performed on Shimadzu UV3600Plus spectrometer. Thermal gravity analyses (TGA) and differential scanning calorimetry (DSC) analyses were performed on by TA Instrument Q600 analyzer and METTLER TOLEDO Instrument DSC822 calorimeter, respectively. Cyclic Voltammetry (CV) was performed on a SP-300 Bio-Logic potentiostat and measurements were recorded in acetonitrile containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as a supporting electrolyte for polymer thin films, glassy carbon electrode as working electrode and platinum wire as counter electrode. All potentials were recorded versus $\mathrm{AgCl} / \mathrm{Ag}$ (saturated) as reference electrode (scan rate: 50 mV s -) and the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple was represented as an external standard. GIWAXS was performed at the College of Chemistry and Molecular Engineering, Peking University.
FET Devices Fabrications and Testing. Top-gate bottom-contact (TG/BC) FET device configuration was adopted using $\mathrm{n}^{++}-\mathrm{Si}^{2} \mathrm{SiO}_{2}(300 \mathrm{~nm})$ substrates. The gold source and drain bottom electrodes (with Ti as the adhesion layer) were patterned on the SiO_{2} surface with photolithography. The substrates were subjected to cleaning using ultrasonication in acetone, detergent, deionized water (twice), isopropanol and then dried under vacuum at $80^{\circ} \mathrm{C}$. The polymer solution ($3 \mathrm{mg} \mathrm{mL}^{-1}$ in $o-\mathrm{DCB}$) was spincoated on the substrates at 1000 rpm for 60 s and 3000 rpm for 3 s . The samples were immediately followed by annealing at $180^{\circ} \mathrm{C}$ for 10 min . After annealing, a CYTOP solution (CTL809M/CT-solv180 $=3 / 1$) was spin-coated onto the semiconducting layer at 2000 rpm for 60 s and then annealed at $100^{\circ} \mathrm{C}$ for 60 min in a glovebox. $45 \mathrm{~nm}-$ thickness Al film was deposited under vacuum $\left(4 \times 10^{-4} \mathrm{~Pa}\right)$ via shadow mask method as the gate electrodes. The testing of the FETs were performed on a probe stage using a Keithley 4200 SCS as parameter analyzer under ambient conditions $\left(22^{\circ} \mathrm{C}, R_{\mathrm{H}}=50-\right.$ 60%). The carrier mobility, μ, was calculated from the data in the saturated regime according to the equation $I_{\mathrm{SD}}=(W / 2 L) C_{\mathrm{i}} \mu\left(V_{\mathrm{G}}-V_{\mathrm{T}}\right)^{2}$, where I_{SD} is the drain current in the saturated regime. W and L are the width and length of the semiconductor channel, respectively. $C_{\mathrm{i}}\left(C_{\mathrm{i}}=3.7 \mathrm{nF}\right)$ is the capacitance per unit area of the gate dielectric layer, and V_{G} and V_{T} are the gate voltage and threshold voltages.
Solution Doping and Thin Film Fabrication. N-DMBI was mixed with the BDOPVbased copolymers to prepare an $o-D C B$ solution with a concentration of $3 \mathrm{mg} \mathrm{mL}^{-1}$. The mixture solution was immediately spin-coated on the treated substrate at 1500 rpm for 60 s and then 3000 rpm for 3 s , followed by annealing at $120^{\circ} \mathrm{C}$ for 8 h . The film thickness ($\sim 8 \mathrm{~nm}$) is determined by AFM. 4-Point conductivity measurements were performed in an N_{2} glovebox with Keithley 4200 SCS.

2. Synthetic procedures and characterization

BDOPV-TVT: $x=100 \%$
BDOPV-TVT $_{0.95}-$ TCCT $_{0.05}: x=95 \%, y=5 \%$
BDOPV-TVT 0.8 - TCCT $_{0.2}: x=80 \%, y=20 \%$
BDOPV-TVT 0.5 -TCT $_{0.5}: x=50 \%, y=50 \%$
BDOPVTCCT: $y=100 \%$

Scheme S1. Synthetic route to BDOPV derivatives and five BDOPV-based polymers. Compounds 4, 6, 8, 9, and $\mathbf{B r}-\mathbf{B D O P V}-\mathbf{B r}$ were synthesized according to the literature ${ }^{1,2,3}$

Compound 2: To a solution of n-butyllithium ($7.4 \mathrm{~mL}, 2.4 \mathrm{M}$) in anhydrous tetrahydrofuran (THF) (15 mL), N-(1-methylethyl)-2-propanamine (DIPA, $1.80 \mathrm{~g}, 17.8$ mmol) was slowly added under N_{2} atmosphere. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min to prepare lithium diisopropylamide (LDA) for next step. To a solution of 2ethylthiophene ($1 \mathrm{~g}, 8.9 \mathrm{mmol}$) in anhydrous THF (15 mL), LDA ($1.80 \mathrm{~g}, 17.8 \mathrm{mmol}$) was slowly added under N_{2} atmosphere. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min and then added chlorotrimethylstannane ($3.55 \mathrm{~g}, 17.8 \mathrm{mmol}$) to the mixture for 2 h . The mxiture was quenched with water and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was directly used for the next step without further purification. Yield: 95%.

Compound 5: Compound 4 ($108.34 \mathrm{mg}, 0.137 \mathrm{mmol}$), $2(64.35 \mathrm{mg}, 0.234 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.04 \mathrm{mg})$ and $\mathrm{P}(o \text {-tol })_{3}(6.710 \mathrm{mg})$ were added to a 100 mL dry Schlenk flask and stirred at $120^{\circ} \mathrm{C}$ for 12 h . The mixture was then cooled to room temperature and removed solvents under reduced pressure. The residue was dissolved in $\mathrm{CHCl}_{3}(100$ mL), then washed with water and brine followed by dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents under reduced pressure, the residue was purified by silica gel chromatography with eluent ($\mathrm{PE}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to give orange solids. Yield: $95 \% .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H}), 1.39-1.20(\mathrm{~m}, 80 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}, \mathrm{ppm}\right): \delta 182.1,158.8,151.7,151.2,144.4$, 139.7, 126.0, 125.3, 119.9, 115.8, 106.1, 77.3, 77.0, 76.7, 40.5, 37.0, 33.4, 31.9, 30.6, 30.1, 29.7, 29.3, 24.4, 23.7, 22.7, 15.7, 14.1. ESI HRMS calcd. for $\mathrm{C}_{54} \mathrm{H}_{91} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+$ H) ${ }^{+}: 818.6843$, Found: 818.6858 .

Br-BDOPV-Br, Et-T-BDOPV-Br, Et-T-BDOPV-T-Et: To a solution of compound 4 $(1.23 \mathrm{~g}, 1.6 \mathrm{mmol})$ and $5(1.28 \mathrm{~g}, 1.6 \mathrm{mmol})$ in acetic acid $(30 \mathrm{~mL}), \mathbf{6}(0.30 \mathrm{~g}, 1.6 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate ($0.059 \mathrm{~g}, 0.31 \mathrm{mmol}$) was added under N_{2} atmosphere. The mixture was heated at $120{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 17 h . The mixture was cooled to room temperature and filtered. After washed with acetic acid and methanol, the residue was purified by silica gel chromatography with eluent ($\mathrm{PE}: \mathrm{CHCl}_{3}$
$=3: 1$) to give the desired compounds as black solids. (Br-BDOPV-Br, yield: 23\%), (Et-T- BDOPV-Br, yield: 30\%), and (Et-T-BDOPV-T-Et, yield: 19\%).
Et-T-BDOPV-Br: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}$): $\delta 9.01$ (s, 2H), 8.98 (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dt}, J=25.3$, $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 145 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}, \mathrm{ppm}\right): \delta 166.9,166.6,146.3,140.2,77.3,77.0,76.7$, 33.6 (s), 31.9, 30.2, 29.7, 29.4, 26.7, 22.7, 14.1. MALDI ESI MS calcd. for $\mathrm{C}_{112} \mathrm{H}_{177} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}^{-}\right): 1757.2516$, Found: 1757.2500.
Et-T-BDOPV-T-Et: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): ~ \delta 8.99$ (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (s, 1H), $7.20(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 73 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 90^{\circ} \mathrm{C}, 125 \mathrm{MHz}, \mathrm{ppm}\right): \delta 166.7$, $150.8,149.5,146.1,139.4,126.0,124.4,103.7,73.6,73.4,73.2,40.0,36.8,33.3,31.3$, 30.8, 29.6, 29.1, 28.7, 26.3, 24.2, 23.1, 22.00, 14.8, 13.4. MALDI ESI MS calcd. for $\mathrm{C}_{118} \mathrm{H}_{184} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}^{-}\right): 1789.3601$, Found: 1789.3567 .

Et-T-BDOPV-TCCT-BDOPV-T-Et: Et-T-BDOPV-Br ($123.03 \mathrm{mg}, 0.070 \mathrm{mmol}$), 9 $(16.524 \mathrm{mg}, 0.032 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.16 \mathrm{mg})$, and $\mathrm{P}(o-\mathrm{tol})_{3}(1.550 \mathrm{mg})$ were added to a 25 mL dry Schlenk flask and stirred to $120^{\circ} \mathrm{C}$ for 12 h . The mixture was then cooled to room temperature and removed solvents under reduced pressure. The residues were dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and then washed with water and brine, and dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel chromatography with eluent ($\mathrm{PE}: \mathrm{CHCl}_{3}=1: 1$) to give dark blue solids. These solids were separated with gel permeation chromatography, using CHCl_{3} as mobile phase, to give Et-T-BDOPV-TCCT-BDOPV-T-Et. Yield: 51%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 9{ }^{\circ} \mathrm{C}, 500 \mathrm{MHz}, \mathrm{ppm}\right): \delta 8.81(\mathrm{~d}, J=24.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.17-$ $6.91(\mathrm{~m}, 8 \mathrm{H}), 6.63(\mathrm{dd}, J=43.3,23.9 \mathrm{~Hz}, 8 \mathrm{H}), 3.81(\mathrm{~s}, 8 \mathrm{H}), 2.71(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 8 \mathrm{H})$, $1.82(\mathrm{~s}, 8 \mathrm{H}), 1.36(\mathrm{~m}, 356 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 25 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 90{ }^{\circ} \mathrm{C}, 125\right.$

MHz, ppm): $\delta 166.5,130.5,124.2,118.0,109.8,73.6,73.4,73.2,40.1,36.9,33.4,31.3$, 30.9, 29.6, 29.1, 28.7, 24.3, 22.9, 22.0, 14.5, 13.4. MALDI ESI MS calcd. for $\mathrm{C}_{234} \mathrm{H}_{362} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{4}\left(\mathrm{M}^{-}\right): 3548.6728$, Found: 3548.6743.

BDOPV-TVT: $x=100 \%$
BDOPV-TVT $0.95-$ TCCT $_{0.05}: x=95 \%, y=5 \%$
BDOPV-TVT ${ }_{0.8}$ TCCT $_{0.2}: x=80 \%, y=20 \%$
BDOPV-TVT $0.5-$ TCCT $_{0.5}: x=50 \%, y=50 \%$
BDOPVTCCT: $y=100 \%$

General Procedure for the Stille Polymerization:

BDOPV-TVT: BDOPV ($98.2 \mathrm{mg}, \quad 0.0568 \mathrm{mmol}$), (E)-trimethyl(5-(3-(((trimethylstannyl)methyl)thio)prop-1-en-1-yl)thiophen-2-yl)stannane (29.4 mg, $0.0568 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.08 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{P}(o-\mathrm{tol})_{3}(2.77 \mathrm{mg}, 16 \mathrm{~mol} \%)$, and 8 mL of toluene were added to a Schlenk flask. The flask was charged with N_{2} through a freeze-pump-thaw cycle for three times. After 2 h at $120{ }^{\circ} \mathrm{C}, N, N$ 'diethylphenylazothioformamide (10 mg) was then added to the mixture and then further stirred for 1 h to remove any residual catalyst before being precipitated into methanol $(200 \mathrm{~mL})$. The precipitate was filtered through a nylon filter and purified via Soxhlet extraction with acetone, hexane, and chloroform. The chloroform solution was then concentrated by evaporation and precipitated into methanol (200 mL) and filtered off to afford dark solids (96 mg , yield 96%).

BDOPV-TCCT: The synthetic procedure is similar to that of BDOPV-TVT. (Yield: 95\%).

BDOPV-TVT $_{\mathbf{0 . 9 5}}$-TCCT $_{\mathbf{0 . 0 5}}$: BDOPV $(95.1 \mathrm{mg}, 0.0550 \mathrm{mmol})$, (E)-trimethyl(5-(3-(((trimethylstannyl)methyl)thio)prop-1-en-1-yl)thiophen-2-yl)stannane (27.1 mg,
0.0522 mmol), 1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethane ($1.4 \mathrm{mg}, 0.00275$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.01 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{P}(o-\mathrm{tol})_{3}(2.68 \mathrm{mg}, 16 \mathrm{~mol} \%)$, and 8 mL of toluene were added to a Schlenk flask. The flask was charged with nitrogen through a freeze-pump-thaw cycle for three times. Afterr 2 h at $120{ }^{\circ} \mathrm{C}, N, N{ }^{\prime}$ diethylphenylazothioformamide (10 mg) was then added to the mixture and then further stirred for 1 h to remove any residual catalyst before being precipitated into methanol $(200 \mathrm{~mL})$. The precipitate was filtered through a nylon filter and purified via Soxhlet extraction with acetone, hexane, and chloroform. The chloroform solution was then concentrated by evaporation and precipitated into methanol (200 mL) and filtered off to afford dark solids (80 mg , yield 82%).

BDOPV-TVT $\mathbf{0 . 8}^{\mathbf{-}} \mathbf{T C C T}_{\mathbf{0 . 2}}$: The synthetic procedure is similar to that of BDOPV-$\mathrm{TVT}_{0.95}-\mathrm{TCCT}_{0.05}$. (Yield: 80%).

BDOPV-TVT $_{0.5}-$ TCCT $_{0.5}$: The synthetic procedure is similar to that of BDOPV-$\mathrm{TVT}_{0.95}-\mathrm{TCCT}_{0.05}$. (Yield: 91%).
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

4. Figures S1-8 and Tables S1-3

b)

Distribution Plots
c)

Figure S1. High temperature gel permeation chromatography (GPC) plots of BDOPVTVT (a), BDOPV-TVT $0_{0.95}-\mathrm{TCCT}_{0.05}$ (b), BDOPV-TVT ${ }_{0.8}-\mathrm{TCCT}_{0.2}$ (c), BDOPV-$\mathrm{TVT}_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{d})$, BDOPV-TCCT (e).

Table S1. Molecular weights and distribution of the polymers a)

Polymer	$M_{\text {p }}$	M_{n}	$M_{\text {v }}$	$M_{\text {w }}$	$M_{\text {z }}$	$M_{\mathbf{z}}+1$	PDI
BDOPV-TVT	65390	34843	105210	121162	284597	573628	3.4774
BDOPV-TVT ${ }_{0.95}$ TCCT $_{0.05}$	72599	38648	112786	129721	300660	592452	3.3565
BDOPV-TVT ${ }_{0.8}$ TCCT $_{0.2}$	107057	36966	128693	147370	321084	578943	3.9866
BDOPV-TVT ${ }_{0.5}$ TCCT $_{0.5}$	219300	78914	222216	251790	502044	799584	3.1907
BDOPV- TCCT	404619	70829	201055	233749	479215	652635	3.3002

${ }^{\text {a) }} \mathrm{GPC}$ versus polystyrene standards in 1,2,4-trichlorobenzene at $150^{\circ} \mathrm{C}$.

Figure S2. Thermal gravity analysis (TGA) (a) and differential scanning calorimeter traces (DSC) of BDOPV-TVT (b), BDOPV-TVT $0.95-\mathrm{TCCT}_{0.05}(\mathbf{c}), \mathrm{BDOPV}^{-T V T} \mathrm{~T}_{0.8^{-}}$ $\mathrm{TCCT}_{0.2}(\mathbf{d}), \mathrm{BDOPV}^{-T V T} \mathrm{~T}_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{e})$ and BDOPV-TCCT (f).

c)

h)

f)

d)

J)

Figure S3. Peak fitting at $30^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$ for $\operatorname{BDOPV}-T V T(\mathbf{a}, \mathbf{b}), \mathrm{BDOPV}_{-T V T}^{0.95}{ }^{-}$ $\mathrm{TCCT}_{0.05}(\mathbf{c}, \mathbf{d}), \mathrm{BDOPV}^{-\mathrm{TVT}_{0.8}-\mathrm{TCCT}_{0.2}(\mathbf{e}, \mathbf{f}), \mathrm{BDOPV}^{-T V T}}{ }_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{g}, \mathbf{h})$ and $\operatorname{BDOPV}-T C C T(i, j)$.

Table S2. Polymer peak fitting of location and intensity

Polymer	$30{ }^{\circ} \mathrm{C}$		$160{ }^{\circ} \mathrm{C}$	
	$\lambda(\mathrm{nm})$	$\mathrm{A}_{1} / \mathrm{A}_{2}$	$\lambda(\mathrm{nm})$	$\mathrm{A}_{1} / \mathrm{A}_{2}$
BDOPV-TVT	848, 776	1.00	827, 758	0.67
BDOPV-TVT ${ }_{0.95}$-TCCT $_{0.05}$	846, 774	1.04	823, 753	0.67
BDOPV-TVT ${ }_{0.8} \mathbf{T C C T}_{0.2}$	841,771	0.84	811,742	0.54
BDOPV-TVT $0_{0.5}$ - $^{\text {TCCT }} 0$	832, 764	0.42	756	---
BDOPV- TCCT	765, 711	1.11	699	---

Figure S4. UV-vis-NIR absorption spectra of intrinsic thin films (a) and annealled thin films at $180^{\circ} \mathrm{C}$ (b).

Figure S5. Cyclic voltammetry of polymers and ferrocene: BDOPV-TVT (a), BDOPV-TVT ${ }_{0.95}-\mathrm{TCCT}_{0.05}(\mathbf{b}), \mathrm{BDOPV}^{-T V T} \mathrm{TV}_{0.8}-\mathrm{TCCT}_{0.2}(\mathbf{c}), \mathrm{BDOPV}^{-T V T} \mathrm{TV}_{0.5}$ $\mathrm{TCCT}_{0.5}$ (d), BDOPV-TCCT (e).

Figure S6. Transfer and output curves for $\operatorname{BDOPV}-T V T(\mathbf{a}, \mathbf{b}), \mathrm{BDOPV}^{-T V T} \mathrm{~T}_{0.95}$ $\mathrm{TCCT}_{0.05}(\mathbf{c}, \mathbf{d}), \mathrm{BDOPV}^{-\mathrm{TVT}_{0.8}-\mathrm{TCCT}_{0.2}(\mathbf{e}, \mathbf{f}), \mathrm{BDOPV}^{-T V T}}{ }_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{g}, \mathbf{h})$ and $\operatorname{BDOPV}-\mathrm{TCCT}(\mathbf{i}, \mathbf{j})$.

Figure S7. AFM height images of intrinsic films of BDOPV-TVT (a), BDOPV-$\mathrm{TVT}_{0.95}-\mathrm{TCCT}_{0.05}(\mathbf{e}), \mathrm{BDOPV}^{-T V T} \mathrm{TV}_{0.8}-\mathrm{TCCT}_{0.2}(\mathbf{i}), \mathrm{BDOPV}^{(\mathrm{TVT}}{ }_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{m})$, and BDOPV-TCCT (\mathbf{q}) and the corresponding doped films with $16 \mathrm{~mol} \% N$-DMBI ($\mathbf{b}, \mathbf{f}, \mathbf{j}$, $\mathbf{n}, \mathbf{r}), 30 \mathrm{~mol} \%(\mathbf{c}, \mathbf{g}, \mathbf{k}, \mathbf{0}, \mathbf{s})$ and $45 \mathrm{~mol}_{\mathrm{m}}(\mathbf{d}, \mathbf{h}, \mathbf{i}, \mathbf{p}, \mathbf{t}) N-\mathrm{DMBI}$.

Figure S8. 2D GIWAXS patterns of BDOPV-TVT (a), BDOPV-TVT $0.95-\mathrm{TCCT}_{0.05}$ (b), BDOPV-TVT $0_{0.8}-\mathrm{TCCT}_{0.2}(\mathbf{c}), \mathrm{BDOPV}^{-\mathrm{TVT}_{0.5}-\mathrm{TCCT}_{0.5} \text { (d) and BDOPV-TCCT (e) }}$ thin films.

Figure S9. UV-vis-NIR absorption spectra of doped solutions with ($16 \mathrm{~mol} \%, 30 \mathrm{~mol} \%$ and $45 \mathrm{~mol} \%) ~ N$-DMBI for BDOPV-TVT (a), BDOPV-TVT ${ }_{0.95}-\mathrm{TCCT}_{0.05}$ (b), BDOPV-TVT $0.8-\mathrm{TCCT}_{0.2}(\mathbf{c})$, BDOPV-TVT $_{0.5}-\mathrm{TCCT}_{0.5}(\mathbf{d})$ and BDOPV-TCCT (e).

Figure S10. UV-vis-NIR absorption spectra of doped films with ($16 \mathrm{~mol} \%$, $30 \mathrm{~mol} \%$ and $45 \mathrm{~mol} \%$) N-DMBI for BDOPV-TVT (a), BDOPV-TVT ${ }_{0.95}-\mathrm{TCCT}_{0.05}$ (b), BDOPV-TVT $0.8-\mathrm{TCCT}_{0.2}(\mathbf{c})$, BDOPV-TVT $_{0.5}-\mathrm{TCCT}_{0.5}$ (d) and BDOPV-TCCT (e).

Figure S11. Electronic conductivities of the doped polymers at different concentrations
of the dopant N-DMBI (a-e), electronic conductivities of $30 \mathrm{~mol} \% N$-DMBI doped polymers with different ratios of TCCT (f).

Table S3. d-d Stacking distances, $\pi-\pi$ stacking distances and coherence length of five intrinsic polymers.

Polymer	d-d (A)	$\pi-\pi(\AA)$	Coherence Length (\AA)
BDOPV-TVT	29.77	3.51	144.5
BDOPV-TVT $\mathrm{0}_{\mathbf{0 . 9}}{ }^{-}$ TCCT $_{0.05}$	29.04	3.49	118.1
BDOPV-TVT ${ }_{0.8}$ - $^{\text {PCCT }}{ }_{0.2}$	29.92	3.42/3.62	112.5
BDOPV-TVT ${ }_{0.5}$ - $^{\text {TCCT }}{ }_{0.5}$	29.51	3.42/3.65	125.5
BDOPV-TCCT	30.75	3.51	100.8

Obtained from their respective thin films fabricated on $\mathrm{SiO}_{2} / \mathrm{Si}$ after annealing at 180 ${ }^{\circ} \mathrm{C}$ for 10 min .

(b)

(c)

(d)

Fig. S12. Mobilities as a function of gate voltage. a) BDOPV-TVT, b) BDOPV-
 BDOPV- TCCT. The mobilities are calculated from the local slopes of the square root of the transfer curves at saturation regime ($I_{\mathrm{DS}}{ }^{1 / 2}$ versus V_{G}).

Figure S13. Differential scanning calorimeter traces of re-tested BDOPV-TVT $\mathrm{T}_{0.8^{-}}$ $\mathrm{TCCT}_{0.2}$ (a), BDOPV-TVT ${ }_{0.8}-\mathrm{TCCT}_{0.2}$ (b) BDOPV-TVT (c), BDOPV-TVT $\mathrm{T}_{0.95}{ }^{-}$ $\mathrm{TCCT}_{0.05}(\mathrm{~d})$, BDOPV-TVT $0.5-\mathrm{TCCT}_{0.5}$ (e), and BDOPV-TCCT (f).

Figure S14. UV-vis absorption spectra of small molecules both in intrinsic films. The film absorption of Et-T-BDOPV-TCCT-BDOPV-T-Et did not show obvious red-shift compared with Et-T-BDOPV-T-Et, but only displayed some intensity difference, which may be caused by the folding between fragments of flexible connection. Folding between fragments significantly increased the transition probability between fragments. When the degree of polymerization was further increased, such as BDOPV-TCCT, the corresponding absorbance changed will be more obvious.

5. References

1. Ting Lei, Jin-Hu Dou, Zhi-Jun Ma, Cong-Hui Yao, Chen-Jiang Liu, Jie-Yu Wang, Jian Pei, J. Am. Chem. Soc. 2012, 134, 20025-20028.
2. Xikang Zhao, Yan Zhao, Qu Ge, Kamal Butrouna, Ying Diao, Kenneth R. Graham, Jian-guo Mei, Macromolecules 2016, 49, 2601-2608.
3. Ting Lei, Jin-Hu Dou, Xiao-Yu Cao, Jie-Yu Wang, and Jian Pei, J. Am. Chem. Soc. 2013, 135, 12168-12171.
