Supporting Information

Facile Intramolecular Crosslinking of Polymers by Metallic Coordination

in Concentrated Solutions

Wei Xu, ^{ab} Dao Xiang, ^{ab} Jingjing Xu, ^{ab} Yilan Ye, ^{*c} Dong Qiu, ^a and Zhenzhong Yang^{*c}

a. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

b. University of Chinese Academy of Sciences, Beijing 100049, China.

c. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

*E-mail: yangzhenzhong@tsinghua.edu.cn; yilanye@mail.tsinghua.edu.cn

1. Experiment

1.1 Materials

N,*N*-dimethylformamide (DMF) was purchased from J&K Chemical. Hydrochloric acid (HCl, 37 vol%), aqueous ammonia (NH₃·H₂O, 28 wt%), ferric chloride hexahydrate (FeCl₃·6H₂O) and ferrous chloride (FeCl₂) were purchased from Sinopharm Chemical Reagent. 1,5-diiodopentane (DIP), ethylene diamine tetraacetic acid (EDTA) were purchased from TCI. Copper nitrate trihydrate (Cu(NO₃)₂·3H₂O) and P4VP_{60k} were purchased from Sigma-Aldrich. PS_{93k}-*b*-P4VP_{35k} and PS_{60k}-*b*-P4VP_{32k}-*b*-PEO_{39.5k} were purchased from Polymer Source. Dialysis bag (Molecular weight cutoff=3500 D) was purchased from Viskase. All the reagents were used as received.

1.2 Intramolecular crosslinking the P4VP contained polymers with metallic ions.

In a typical experiment, P4VP_{60k} (100 mg, 1.67×10^{-3} mmol) was dissolved in DMF (6.0 mL). 380 μ L aqueous HCl (1M, 0.38 mmol) was diluted to 2.0 mL DMF and dropped into the solution for protonation of P4VP at 25 °C within 2 min. 23 mg of copper nitrate trihydrate (Cu(NO₃)₂·3H₂O) (0.095 mmol) was dissolved in 2.0 mL of DMF was dropped under stirring at 800 rpm within 3 min at 25 °C for the crosslinking. The crosslinking was performed at a concentration of 10 mg/mL. The crosslinked single chain nanoparticle (SCNP) of *c*P4VP was achieved by freeze drying the dispersion after

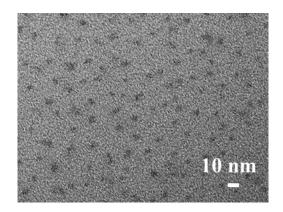
dialysis against water for 48 h.

1.3 Covalent crosslinking the *c*P4VP with DIP.

In a typical experiment, the Cu²⁺ crosslinked $cP4VP_{60k}$ (20 mg) was dispersed in DMF at a concentration of 10 mg/mL. After a given amount of DIP (2.3 μ L, 0.015 mmol) was fed, the dispersion was stirred at 60 °C for 4 h. The DIP crosslinked SCNP was achieved by freeze drying after the dialysis.

1.4 Decomplexation of the *c***P4VP with EDTA.**

In a typical experiment, the Cu²⁺ crosslinked *c*P4VP_{60k} (20 mg) was dispersed in DMF at a concentration of 10 mg/mL. EDTA solution in water (pH=8) (10 mL, 40 mg/mL) was fed and stirred for 2 h. After dialysis, the precipitation in the dialysis bag was washed by aqueous NaOH and water for 3 times. The *c*P4VP nanoparticles were recovered into polymer chains after freeze-drying.


1.5 Synthesis of the composite SCNP of cP4VP@Fe₃O₄.

P4VP_{60k} (20 mg) was dissolved in DMF (2.0 mL) and degassed with nitrogen for 1 h. After the protonation with aqueous HCl in DMF at a molar ratio of 0.4:1.0, the mixture of FeSO₄·7H₂O (3.0 mg) and FeCl₃·6H₂O (5.2 mg) (molar ratio 1.0:1.8) was fed for the intramolecular crosslinking. After the dispersion was heated to 80 °C, a desired amount of aqueous ammonia was fed to adjust pH~10. After stirring for 1 h, the composite SCNP of *c*P4VP@Fe₃O₄ was achieved after collection with a magnet.

1.6 Characterization.

Size and zeta potential were measured in DMF by dynamic light scattering at 25 °C on Malvern Zeta sizer Nano ZS90 with the measurement range of 0.3 nm-5 μ m. All the samples were diluted to 1 mg/mL and measured without filtration. TEM characterization was performed on JEOL 1011 operating at 100 kV. The sample was diluted to 1 mg/mL with DMF and dropped onto the ultra-thin carbon film. Size statistical analysis of the TEM images was conducted by the Image J among 180 SCNP samples.

2. Results and Discussion

Figure S1. TEM image of the $cP4VP_{60k}$ after the intramolecular crosslinking with Cu²⁺ in an extremely dilute solution at 0.01 mg/mL.

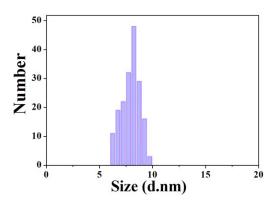
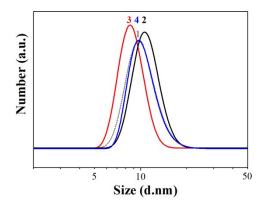
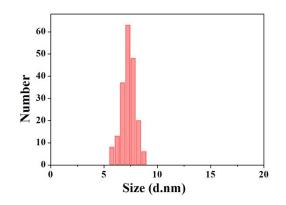
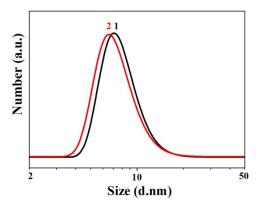
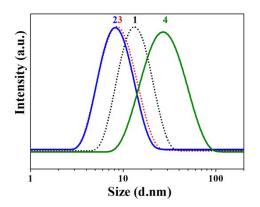
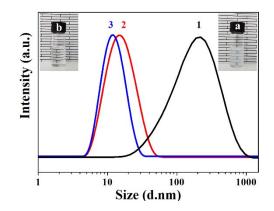
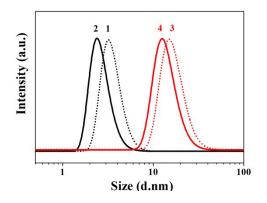



Figure S2. Image J statistical diameter of cP4VP_{60k} coordinated with Cu²⁺.

Figure S3. DLS traces of (1) P4VP_{60k} in DMF, (2) the protonated P4VP_{60k} at a degree of 40%, (3) $cP4VP_{60k}$ after crosslinking with Cu²⁺ and (4) the protonated P4VP_{60k} in the presence of LiBr in DMF solution (the concentration of LiBr in DMF was 50 mmol/L).


Figure S4. Image J statistical diameter of the cP4VP_{60k} coordinated with Fe³⁺.


Figure S5. DLS traces of (1) the cP4VP_{60k} after the electrostatic-mediated intramolecular crosslinking with $Fe^{2+}/Fe^{3+}at$ the polymer concentration of 10 mg/mL and (2) the derived cP4VP@Fe₃O₄ composite nanoparticle.

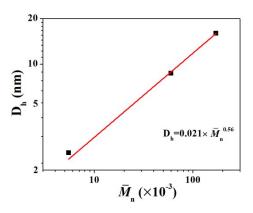
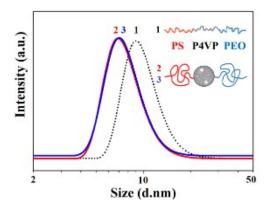

Figure S6. Intensity versus size DLS traces of (1) $P4VP_{60k}$, (2) the reference SCNP formed in the dilute solution, after electrostatic-mediated intramolecular crosslinking the $P4VP_{60k}$ with Cu²⁺ at varied contents: (3) 3% and (4) 4%.

Figure S7. (1) DLS trace of the turbid system (a) at a higher (70%) protonation of $P4VP_{60k}$ in DMF; (2) the transparent solution (b) after feeding LiBr to the turbid system and (3) after the intramolecular crosslinking with Cu²⁺.


Figure S8. DLS traces of (1) P4VP_{6k} and (2) after the intramolecular crosslinking with 10% of Cu^{2+} ; (3) P4VP_{170k} and (4) after the intramolecular crosslinking with 10% of Cu^{2+} . The molar content of H⁺ was fixed at 40%.

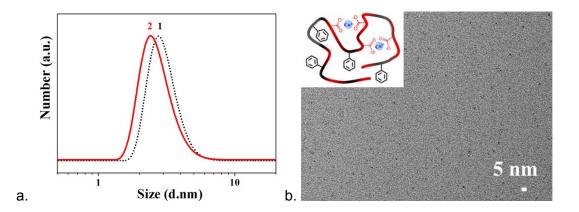

Figure S9. Hydrodynamic diameter (D_h) dependence of the derived *c*P4VP on number average molecular weight (M_n) of P4VP.

Figure S10. (a) Cu^{2+} crosslinked $cP4VP_{60k}$ dispersion in DMF and (b) after feeding EDTA and dialysis.

Figure S11. DLS traces of (1) PS_{60k} -*b*-P4VP_{32k}-*b*-PEO_{39.5k} in DMF and the two SCNPs by the electrostatic-mediated crosslinking at polymer concentrations (mg/mL): (2) 50, (3) 80.

Figure S12. (a) DLS traces of (1) the SMA in DMF and (2) the *c*SMA SCNP after the electrostatic-mediated intramolecular crosslinking with Cu^{2+} at the polymer concentration of 10 mg/mL; (b) TEM image of the *c*SMA SCNP and the inset scheme.