Supporting Information

Supramolecular AIE Polymer-based Rare Earth Metallogels for Selective Detection and High Efficiency Removal of Cyanide and Perchlorate

Qi Zhang^a, You-Ming Zhang^{*a, b}, Hong Yao^a, Tai-Bao Wei^a, Bingbing Shi^a and Qi Lin^{*a}

^a Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China.
^b Gansu Natural Energy Research Institute, Lanzhou, Gansu 730046, China.

* Corresponding author.

E-mail addresses: zhangnwnu@126.com (Y.-M. Zhang), linqi2004@126.com (Q. Lin).

Contents

1. Experimental section	1 -
1.1 Chemicals and materials	1 -
1.2 General Experimental Procedures	1 -
2. Supplementary figures	3 -
3. Supplementary table	26 -
4.References	28 -

1. Experimental section

1.1 Chemicals and materials

All solvents and reagents were commercially available in an analytical degree and used without further purification. All cations and anions were prepared in an aqueous solution (c = 0.1 m). ¹H NMR spectra were recorded at 600MHz and 400MHz, ¹³C NMR spectra at 151MHz. Ultraviolet-visible (UV-vis) spectra were recorded on a Shimadzu UV-2550 spectrometer. Fluorescence emission spectra have been obtained using an RF-5301 / PC Optical spectro fluorophotometer (Shimadzu). Scanning Electron Micrographs (SEM) of xerogels were investigated using the JSM-6701F instrument with an acceleration voltage of 8 kV. The IR spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. A Rheological Properties Test was performed using a Rheolaser Lab Diffusing Wave Spectroscopy instrument (Rheolaser LAB 6 master, Formulaction, France). Dionex ICS-1500 ion chromatograph (Dionex, USA); DS6 conductivity detector; AERS 4mm anion suppressor; Chromeleon 6.8 chromatography workstation; IonPac AS22 anion analysis column (250 mm × 4 mm); IonPac AG22 anion protection column (50 mm ×4 mm).

1.2 General Experimental Procedures

¹H NMR Titration. PM (10 mg, 9.79×10^{-6} mol) was dissolved in DMSO- d_6 (0.5 mL). Then, a series of different equivalents of TH (0.5, 1.0, 1.5, equiv and so on) were added into the solution of PM, and their ¹H NMRs were recorded.

Fluorescence titration. (1). Fluorescence titration based on different concentrations cations: A serious of the PT-G gels with different concentrations (0.1 equiv., 0.2 equiv., 0.3 equiv., 0.4 equiv., and so on) metal ions (Eu³⁺ and Tb³⁺) were prepared by dissolving PM (5 mg), TH (5 mg) and proper equivalent of metal salt in DMSO:H₂O (2:1/v:v) binary solution (0.3 mL). Then record their fluorescence intensity at 470 nm wavelength.

(2). Fluorescence titration based on different equivalent anions: The rare earth metallogels (PT-GEu and PT-GTb) with different equivalents (0.5 equiv., 1.0 equiv., 1.5 equiv., 2.0 equiv., 2.5 equiv. and so on) of anions (ClO_4^- or CN^-) were prepared by dissolve PT-GEu or PT-GTb and proper equivalent of anions salt in DMSO:H₂O (2:1/v:v) binary solution (0.35 mL). Then record their fluorescence intensity at the 470 nm wavelength.

2. Supplementary figures

Scheme S1. Synthetic routes to compound PM.

Synthesis of the PM ^[1]. A mixture of pillar[5]arene (compound 2) (1.1472g, 1.2 mmol) and *o*-phthalimide (0.46305g, 2.5 mmol) in DMF solution (35 mL) was stirred at 90 °C for 24 h under nitrogen atmosphere. The solution was evaporated under vacuum and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) to afford PM as a yellow solid (0.996 g, 81.32%), mp: 60-62 °C. ¹H NMR (DMSO-*d*₆), 400 MHz), δ /ppm: 7.847-7.842 (m, 1H), 7.838- 7.833 (m, 1H), 7.712-7.707 (m, 1H), 7.703-7.698 (m, 1H), 6.796-6.763 (m, 10H), 3.843-3.821 (t, J = 6.5 Hz, 2H), 3.775-3.745 (m, 10H), 3.683- 3.650 (m, 27H), 3.646-3.643(t, J = 6.1 Hz, 2H), 1.773-1.657 (m, 4H), 1.488-1.320 (m, 2H), 1.307-1.228 (m, 10H). ¹³C NMR (DMSO-*d*₆, 151 MHz), δ /ppm: 168.395, 150.643, 150.605, 133.818, 132.078, 128.258, 123.071, 114.820, 113.942, 68.463, 55.693, 53.191, 40.283, 40.141, 40.000, 39.723, 37.988, 29.692, 29.402, 29.061,

26.781, 26.213. MS m/z: $[PM]^+$ calcd for $C_{62}H_{71}NO_{12}$: 1021.4976; found: 1021.4968.

Figure S1. ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 1.

Figure S2. ¹³C-NMR spectrum (151 MHz, CDCl₃) of compound 1.

Figure S3. High resolution ESI-MS data of compound 1.

Figure S4. ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 2.

Figure S5. ¹³C-NMR spectrum (151 MHz, CDCl₃) of compound 2.

Figure S6. High resolution ESI-MS data of compound 2.

Figure S7. ¹H-NMR spectrum (600 MHz, DMSO- d_6) of compound PM.

Figure S8. ¹³C-NMR spectrum (151 MHz, DMSO- d_6) of compound PM.

Figure S9. High resolution ESI-MS data of compound PM.

Scheme S2. Synthetic routes to compound TH.

Synthesis of the TH ^[2]. First, we put 1,3,5-benzenetricarbonyl trichloride (0.7965 g, 3.0 mmol) dissolution with DMF (20 mL), and then the solution was dropwise added to a mixture of 4-aminopyridine (1.1295 g, 11 mmol) and TEA (2 mL) in DMF (30 mL). The reaction mixture was stirred at room temperature for 24 h. Recrystallization of **TH** after the reaction was finished, then dried under vacuum. Yield: 0.7186 g (54.67%). M.p.: $270 \sim 272$ °C. ¹H NMR (400 MHz, DMSO-*d*₆), δ /ppm: 10.980 (s, 3H), 8.792-8.745 (t, *J* = 8.6 Hz, 3H), 8.457-8.519 (t, *J* = 5.4 Hz, 6H), 7.845-7.834 (t, *J* = 4.4 Hz, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆), δ /ppm: 166.05, 165.66, 150.87, 150.78, 146.26, 146.13, 145.41, 135.38, 134.92, 132.15, 131.03, 114.60, 109.24. MS m/z: [**TA** + H]⁺ calcd for C₂₄H₁₉N₆O₃,

439.1519; found 439.1510.

Figure S10. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound TH.

- 9 -

Figure S11. ¹³C-NMR spectrum (151 MHz, DMSO- d_6) of compound TH.

Figure S12. High resolution ESI-MS data of compound TH.

Figure S13. The UV-vis spectrum of the PM, TH and PT-G $(2.0 \times 10^{-5} \text{M})$.

Figure S14. Fluorescence spectra of the DMSO-H₂O (2:1, v/v) binary solution of **PM** (c = 19 mM), **TH** (c = 19 mM), **PT-G** (c = 19 mM, T = 60° C > Tgel) and the **PT-G** gel (in the DMSO/H₂O (2:1, v/v) binary solution, c = 19 mM, T = 25° C < Tgel).

Figure S15. Partial host-guest 1H NMR spectra of (a) free PM, (b) free TH, (c) PM \subset TH 3.0 equiv. in (DMSO-*d*₆).

Figure S16. 2D-NOESY NMR spectrum of PM (10 mM) in CDCl₃ solution.

Figure S17. High resolution ESI-MS data of compound PT-G.

Figure S18. Fluorescence spectrum responses of the supramolecular gel **PT-G** (DMSO-H₂O (2: 1, v/v)) upon adding of various metal ions (Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, Mg²⁺, Ba²⁺, Al³⁺, Th⁴⁺, Ce³⁺, La³⁺, Eu³⁺ and Tb³⁺, c = 0.1 M, in room temperature).

Figure S19. Photograph of the linear range for Eu³⁺.

Linear Equation: $Y = -45.79 \times X + 531.02$ R²=0.99

$$S=4.58 \times 10^{7}$$

$$\delta = \sqrt{\frac{\sum_{i=1}^{N} (F_i - F)^2}{N - 1}} = 1.58 \text{ (N=20)}$$

LOD = K × δ /S = 1.04×10⁻⁷ M (K=3)

Figure S20. The association constant and complex ratio of PT-G and Eu³⁺ with $\log \frac{I - I_{\min}}{I_{\max} - I} = \log Ka + n \log[G]$ fluorescent titration. Calculation formula:

Figure S21. Photograph of the linear range for Tb³⁺.

Linear Equation: Y= -252.43×X +330.70 R²=0.99

S=2.52×10⁸
$$\int_{k=1}^{N} (F_{i} - F)2$$
$$\delta = \sqrt{\frac{N-1}{N-1}} = 1.77 \text{ (N=20)}$$

 $LOD = K \times \delta/S = 2.10 \times 10^{-8} M (K=3)$

Figure S22. The association constant and complex ratio of PT-G and Tb³⁺ with $\log \frac{I - I_{\min}}{I_{\max} - I} = \log Ka + n \log[G]$ fluorescent titration. Calculation formula:

Figure S23. (a) Fluorescence spectrum responses of the PT-GEu (DMSO-H₂O (2: 1, v/v)) upon adding of various anions (ClO₄⁻, F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻,

 $H_2SO_4^-$ and $H_2PO_4^-$, c = 0.1 M, in room temperature); (b) Fluorescence spectrum responses of the **PT-GTb** (DMSO-H₂O (2: 1, v/v)) upon adding of various anions (CN⁻, F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻, c = 0.1 M, in room temperature).

Figure S24. Photograph of the linear range for ClO₄⁻.

Linear Equation: $Y = 1.20 \times X + 117.81$ R²=0.99

S=1.20×10⁶

$$\sqrt{\frac{\sum_{i=1}^{N} (F_i - F)2}{N - 1}} = 1.35 \text{ (N=20)}$$
LOD = K × δ /S =3.36×10⁻⁶ M (K=3).

Figure S25. Photograph of the linear range for CN⁻.

Linear Equation: Y=102.92×X + 61.72 R²=0.99

S=1.03×10⁸
$$\sqrt{\sum_{i=1}^{N} (F_i - \overline{F})^2}_{\delta = \sqrt{N-1}} = 2.05 \text{ (N=20)}$$
LOD = K × δ /S =5.96×10⁻⁸ M (K=3)

Figure S26. The control experiments: (a) **PT-GEu** and **PT-GEu** treated by water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (b) **PT-GEu** and **PT-GEu** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻ and H₂PO₄⁻) treated by water solution of ClO₄⁻. (c) **PT-GTb** and **PT-GTb** treated by water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (d) **PT-GTb** and **PT-GTb** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (d) **PT-GTb** and **PT-GTb** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (d) **PT-GTb** and **PT-GTb** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, CN⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (d) **PT-GTb** and **PT-GTb** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻); (d) **PT-GTb** and **PT-GTb** contained water solutions of various anions (F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, OH⁻, SCN⁻, AcO⁻, HSO₄⁻, H₂SO₄⁻, ClO₄⁻ and H₂PO₄⁻) treated by water solution of CN⁻.

Figure S27. Frequency-dependent elastic (or storage) modulus G' and viscous (or loss) modulus G" of the supramolecular hydrogel for **PT-G**.

Figure S28. Frequency-dependent elastic (or storage) modulus G' and viscous (or loss) modulus G" of the supramolecular hydrogel for **PT-GEu**.

Figure S29. Frequency-dependent elastic (or storage) modulus G' and viscous (or loss) modulus G' of the supramolecular hydrogel for **PT-GTb**.

Figure S30. FT-IR spectra of the PT-G, PT-GEu and PT-GEu+ClO₄⁻.

Figure S31. FT-IR spectra of the PT-G, PT-GTb and PT-GTb+CN⁻.

Figure S32. SEM images of (f) xerogel PT-GTb, (g) xerogel PT-GTb+CN⁻.

Figure S33. Fluorescence colors changes (under the UV lamp, at $\lambda_{ex} = 365$ nm) of the PT-GE and PT-GE test kits after addition of different concentration Eu³⁺ and ClO₄⁻ (from 0 M to 0.1 M).

Figure S34. Complete host-guest ¹H NMR spectra of (a) free PM, (b) free TH, (c) PM \subset TH 3.0 equiv. in (DMSO- d_6).

3. Supplementary table

Entry	Solvent	State ^a	CGC ^b (%)	Tgel ^c (°C,wt%)
1	water	Р	/	\
2	acetone	р	\	\
3	methanol	Р	\	\
4	ethanol	р	\	\
5	isopropanol	р	\	\
6	isopentanol	р	\	\
7	acetonitrile	Р	\	\
8	THF	S	\	\
9	DMF	S	\	\
10	$DMF + H_2O$	Р	\	\
11	DMSO	S	\	\
12	$DMSO + H_2O$	G	3.33%	57 °C
13	CCl ₄	Р	\	\
14	n-hexane	р	\	\
15	ethanediol	Р	\	\
16	tert-butylalcohol	Р	\	\
17	CH_2Cl_2	S	\setminus	\
18	CHCl ₃	S	\	\
19	CH ₂ ClCH ₂ Cl	Р	\	\
20	petroleum ether	Р	\	\
21	ethyl acetate	Р	\	\
22	n-propanol	р	\	\
23	n-butyl alcohol	р	\	\
24	cyclohexanol	S	\	\
25	n-hexanol	р	\	\
26	propanetriol		\	\

 Table S1. Gelation Properties of PT-G in Different Organic Solvents.

^aG, P and S denote gelation, precipitation and solution, respectively.

^b The critical gelation concentration (wt%, 10mg/ml = 1.0%).

^c The gelation temperature (°C).

Ion	Initial concentration (M)	Residual concentration (M)	Absorbing rate %
ClO ₄ -	1×10 ⁻⁴ M	6.67 × 10 ⁻⁶ M	93.33%
CN-	1×10-4 M	7.14 × 10 ⁻⁶ M	92.86%

Table S2. The HPIC date of PT-GTb and PT-GEu with ClO_4^- and CN^- .

Calculation method of adsorption percentage:

Adsorption percentage(%) =
$$\left(1 - \frac{C_R \times V_R}{C_I \times V_I}\right) \times 100\%$$

(State: C_R is the residual concentration of ClO_4^- and CN^- , C_I is the initial concentration of ClO_4^- and CN^- , $V_R=V_I$).

4. References

[1] You-Ming Zhang, Wei Zhu, Xiao-Juan Huang, Wen-Juan Qu, Jun-Xia He, Hu
Fang, Hong Yao, Tai-Bao Wei, and Qi Lin, *ACS Sustainable Chem. Eng.*, 2018, 6, 16597-16606.

[2] Yan-Qing Fan, Juan Liu, Yan-Yan Chen, Xiao-Wen Guan, Jiao Wang, Hong Yao, You-Ming Zhang, Tai-Bao Wei and Qi Lin, *J. Mater. Chem. C*, 2018, **6**, 13331.