SUPPORTING INFORMATION

Self-assembly of supramolecular chemoenzymatic poly-L-Phenylalanine

Alejandra Romero-Montero,^a Isabel S. Aguirre-Díaz,^a Jordi Puiggalí,^b Luis J. del Valle^{b*}, Miquel Gimeno^{a*}

^a Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, México

^b Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona, Spain

Figure S1. SEC traces runs from different sample concentrations against PMMA standards.

Figure S2. ¹H NMR spectra for PLP

Figure S3. SDS-PAGE of PLP fresh solution from reactor (1), concentrated sample by nanofiltration (2-5).

Figure S3-1. UV-vis absorption spectra ($\epsilon_{257 \text{ nm}}$ = 2.08 x10⁴ L mol⁻¹cm⁻¹) with different ePLP concentrations (0.2-1.8 mg/mL).

Figure S3-2. Calibration curve for PLP in water by UV-vis spectroscopy.

Figure S4. UV spectra upon heating from 25 °C (blue) to 90 °C (red) for water-solubilized

(a), and urea-solubilized (b) ePLP.

Figure S5. Nyquist plot of ePLP nanotubes (black and red symbols) and ePLP bulk (green and purple symbols). The inset represents a detail of the high- frequency region.

Figure S6. Equivalent electrical circuit

Figure S7. DSC for ePLP.

Figure S8. Imaginary part (ϵ '') of the dielectric constant for disordered (a) and nanotubes ePLP (b).

Figure S9. Raman spectra for PLP nanotubes (red); and TC-loaded PLP nanotubes (blue).